摘要
烟气轮机的振动信号具有很强的非线性特征。提出了将迭代奇异值分解(ISVD)降噪与关联维数分析相结合应用于烟气轮机故障诊断。采用低通数字滤波与ISVD降噪两种方法对实测数据进行降噪处理,对其效果进行对比,并计算烟气轮机在不同故障状态下振动信号降噪前、后的关联维数。结果表明:对于烟气轮机信号,低通数字滤波的降噪效果并不理想,而ISVD降噪则能有效地去除噪声;降噪后,烟气轮机振动信号的伪相图特征清晰,关联积分曲线的标度区明显变宽;不同故障状态下计算得到的关联维数明显不同,可以将关联维数作为故障诊断的定量特征进行提取,从而为烟气轮机故障诊断提供简单而有效的方法。
Considering the complicated and non-linear characteristics of the vibrational signal of flue gas turbine, the iterative singular value decomposition (ISVD) de-noising and correlation dimension were applied in fault diagnosis of flue gas turbine. To eliminate the noise, the low-pass filter and the ISVD de-noising were applied separately. Then the correlation dimensions of vibration signal of flue gas turbine under different fault conditions were estimated. The results show that the effect of the low- pass filter is not obvious while the ISVD de-noising can reduce noise effectively. Comparing with the pseudo-phase portrait reconstructed from signal containing noise, the pseudo-phase portrait reconstructed after ISVD de-noising is more regular. By ISVD de-noising, the scale region on the log-log plot of correlation integrals becomes wider. The correlation dimension is obviously different for different fault conditions after ISVD de-noising, so it can be used as the quantitative characteristic parameter for fault diagnosis. This offers a simple and effective method for fault diagnosis of flue gas turbine.
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第1期93-98,108,共7页
Journal of China University of Petroleum(Edition of Natural Science)
基金
国家'863'资助(2008AA06Z209)
教育部新世纪优秀人才支持计划(NCET-05-0110)
石油科技中青年创新基金(07E1005)
中国石油天然气集团公司创新基金
关键词
烟气轮机
故障诊断
关联维数
ISVD降噪
伪相图
低通滤波
flue gas turbine
fault diagnosis
correlation dimension
ISVD de-noising
pseudo-phase portrait
low-pass filter