期刊文献+

基于SVM理论的大坝安全预警模型研究 被引量:79

An Early-warning Model of Dam Safety Based on SVM Theory
下载PDF
导出
摘要 大坝安全预警模型可以理解为根据特定的映射关系由影响因素域到大坝性态效应量域的计算求解问题.对于多因素综合影响下的大坝系统,这种映射关系一般为非线性的.从机器学习的角度,本文应用粗集理论和SVM理论,研究了对上述关系的拟合.首先,利用粗集理论智能数据分析方法,对大坝安全监测信息进行预处理,抽取关键成分作为映射关系的输入,从而确定映射关系的初始拓扑结构.在此基础上,应用最小二乘支持向量机算法,以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,从大坝安全原型观测数据中学习归纳出大坝系统运行规律,从而实现对大坝安全预警模型的构建.实例分析表明,该模型能够有效的模拟和预测大坝工作性态与主要影响因素的关系. The early-warning models of dam safety was a expression as the non-linear mapping relation between two field of dam behavior and their influence factors. Two tools of machine learn, rough sets theory and support vector machine (SVM) method, were used to build above relation. Data pretreatment on dam safety monitoring was implemented by the intelligent method analyzing data in rough sets theory. Main factors influencing dam safety were mined. The initial topological structure of SVM model was determined. An early-warning model was built with least squares support vector machines. Training error was the restriction condition of above optimization problem. The principles of structural risk minimization was used. Based on prototype observations of dam safety, the relation between dam behavior and their main influence factors was approximated and predicted. Experimental result indicated that the proposed model was an effective method for early-warning of dam safety.
出处 《应用基础与工程科学学报》 EI CSCD 2009年第1期40-48,共9页 Journal of Basic Science and Engineering
基金 国家自然科学基金重点项目(50809025 50539110 50539010) 国家科技支撑计划项目(2008BAB29B03 20006BAC14B03)
关键词 大坝安全 预警模型 机器学习 SVM理论 dam safety early-warning model machine learning support vector machine
  • 相关文献

参考文献11

  • 1Wu Zhongru,Su Huaizhi. Dam health diagnosis and evaluation [ J ]. Smart Materials & Structures, 2005,14 ( 3 ) : 130-136
  • 2张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112.
  • 3Vapnik V N. The nature of statistical learning theory[ M ]. New York: Springer-Verlag, 1995.
  • 4Pawlak Zdzislaw, Skowron Andrzej. Rudiments of rough sets [ J ]. Information Sciences ,2007,177 (1) :3-27.
  • 5Renaud J, Thibault J, Lanouette R, et all. Comparison of two multicriteria decision aid methods: Net flow and rough set methods in a high yield pulping process[ J ]. European Journal of Operational Research,2007,177 (3) :1418-1432
  • 6贾嵘,杨可,蔡振华,等.基于傅里叶分解和最小二乘支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(25):281-284.
  • 7陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153. 被引量:24
  • 8赵洪波,冯夏庭.支持向量机函数拟合在边坡稳定性估计中的应用[J].岩石力学与工程学报,2003,22(2):241-245. 被引量:93
  • 9Katagiri Shinya, Abe Shigeo. Incremental training of support vector machines using hyperspheres [ J ]. Pattern Recognition Letters,2006,27 ( 13 ) : 1495-1507
  • 10Trafalis T B, Gilbert R C. Robust support vector machines for classification and computational issues [ J ]. Optimization Methods and Software,2007,22( 1 ) :187-198

二级参考文献30

  • 1夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望[J].金属矿山,1995,24(12):9-12. 被引量:29
  • 2冯夏庭.智能岩石力学及其在岩土工程中的应用:岩土力学新计算方法讲义[R].武汉:中国科学院武汉岩土力学研究所,1999..
  • 3刘清.Rough集及Rough推理[M].北京:科学出版社,2003.209-212.
  • 4Vladimir N Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Whitma n R V. Evaluation calculated risk in geomechanical engineering[J]. J. Geotech. Engrg.,ASCE,1984,110(8):145-188.
  • 6张兴. 边坡工程的可靠性分析[A]. 见:陈祥福编. 岩土力学进展[C]. 北京:中国展望出版社,1990. 31-40.(Zhang Xing. Reliability Analysis for Slope Engineering[A]. In:Chen Xiangfu ed. Progress on Geomechanics[C]. Beijing:China Publishing House of Prospect,1990. 31-40. (in Chinese))
  • 7Cho S E,Lee S R. Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(9):756-763.
  • 8Pradeep U K,Nitin K D. Neural networks for profiling stress history of clays from PCPT data[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(7):569-579.
  • 9Vapnic V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag,1995. 126-178.
  • 10Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2(2):124-164.

共引文献219

同被引文献533

引证文献79

二级引证文献457

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部