期刊文献+

数据挖掘在石油勘探数据库中的应用前景 被引量:8

Prospect of the Application of Data Mining in Petroleum Exploration Databases
下载PDF
导出
摘要 通过世界现状分析,指出数据挖掘(Data Mining,以下简称DM)在石油勘探数据库中的应用尚处于起步阶段。在前人的工作基础上,简述了数据库DM技术的结构、功能、算法及关键技术。以一个测井解释实例具体介绍DM的操作过程、技术方法及应用效果,验证该技术的可行性、实用性。实例中,采用多元回归分析,实现数据降维;分别采用人工神经网络和支持向量机两个挖掘算法,进行知识发现。基于国内大批石油勘探数据库(包括数据银行、数据仓库等)的陆续建成,认为DM技术的研发已提到议事日程,必将成为石油地质研究和勘探决策的有力手段。 This paper indicates through worldwide analysis that the application of data mining (DM) in petroleum exploration databases is in the initial stage. It briefly describes the structures, functions, algorithms and key techniques of data mining based on the work of pioneer contributors. A case study of well-logging interpretation introduces the processes, methods and application results of DM in concrete terms, proving that the DM used is feasible and practical. In the case study, multiple regression analysis is adopted as a dimension-reduction algorithm, while artificial neural network and support vector machine are employed as mining algorithms for knowledge discovery. Since a great number of petroleum exploration databases (including databanks and datastores) have been or will be built in China, it is time to further develop the techniques of DM that will become powerful tools for petroleum geology research and exploration decision.
作者 石广仁
出处 《中国石油勘探》 CAS 2009年第1期60-64,共5页 China Petroleum Exploration
关键词 数据挖掘 知识发现 广义数据库 降维算法 挖掘算法 石油勘探 裂缝预测 data mining knowledge discovery generalized database dimension-reduction algorithm mining algorithm petroleum exploration fracture prediction
  • 相关文献

参考文献26

  • 1Hirsh H.Data mining research:currentstatus and future opportunities.Statistical Analysis and Data Mining,2008,1(2):104-107.
  • 2Hand D,Mannila H,Smyth P.Principles of Data Mining.Cambridge,MA,USA.MIT Press,2001.
  • 3Larose D T.Discovering Knowledge in Data.New York:John Wiley & Sons,Inc.,2005.
  • 4Larose D T.Data Mining Methods and Models.New York:John Wiley & Sons,Inc.,2005.
  • 5Wong P M.A novel technique for modeling fracture intensity:A case study from thePinedale anticline in Wyoming.AAPG Bulletin,2003,87(11):1717-1727.
  • 6Aminzadeh F.Applications of AI and soft computing for challenging problems in the oilindustry.Journal of Petroleum Science and Engineering,2005,47(1-2):5-14.
  • 7Mohaghegh S D.A new methodology for the identification of best practices in the oil andgas industry,using intelligent systems.Journal of Petroleum Science andEngineering,2005,49(3-4):239-260.
  • 8雷景生.基于POSC平台的油气勘探数据仓库及数据挖掘[J].计算机工程,2003,29(20):175-176. 被引量:2
  • 9段新民,陈清华,李琴.石油勘探开发数据信息与数据挖掘[J].情报杂志,2004,23(7):111-112. 被引量:7
  • 10汪忠德,王新海,瞿建华,方海飞,刘洪.数据挖掘技术在石油勘探与开发中的研究及应用[J].石油工业计算机应用,2007,15(1):17-20. 被引量:8

二级参考文献70

共引文献93

同被引文献107

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部