期刊文献+

用于行人头部特征提取的目标区域匹配方法 被引量:9

An Target Region Matching Algorithm for the Head Feature Extraction of Pedestrian
下载PDF
导出
摘要 为了准确地定位与跟踪序列图像中的运动行人以获取精确的客流量信息,提出了一种基于目标区域匹配的行人头部特征提取新方法。与常用的基于致密视差图的头部区域视差获取方法不同,该方法基于"先分割后匹配"的思想,即首先借助单目图像处理方法对基准图进行分割,获取候选头部区域;然后直接将这些候选头部区域作为目标区域,在匹配图中搜索其匹配对应区域以获取候选头部区域的视差;再借助候选头部区域的视差提取出候选头部区域的深度与透视特征,用于去除虚假头部区域以获取最终的头部检测结果。性能测试与实验结果表明,该方法不仅视差提取精度高、实时性好,并且借助该方法获取的头部特征具有较高的区分度,可以有效去除候选头部区域中的虚假头部区域,使客流量检测的准确率达到90%以上。 In order to acquire accurate passenger flow information by locating and tracking moving pedestrians accurately in image sequence, a novel approach of head feature extraction based on target region matching is presented. Deferent from the common methods based on dense disparity image to obtain the disparity of the head region, the method in this paper is based on the idea of "segmentation before matching", i.e. the reference image is segmented firstly by monocular image processing and the candidate head regions will be acquired. Then these candidate head regions will be taken as the target regions to be directly used in the correspondence regions searching and matching to obtain the head disparity. Finally the disparity of the candidate head regions is used to extract the depth and perspective feature of the candidate head regions to remove the false head regions. The performance test and experiment results show that the method proposed in this paper has the advantage of higher precision of disparity extraction and better real-time performance as well as the great importance to extract the pedestrian head's feature with high degree of distinction to effectively eliminate the false head regions so that the accuracy of the passenger flow detection can reach over 90%.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第3期482-488,共7页 Journal of Image and Graphics
基金 国家高技术研究发展计划(863)项目(2006AA09Z228)
关键词 立体视觉 图像处理 块匹配 目标区域匹配 stereo, image processing, block matching, target region matching
  • 相关文献

参考文献9

  • 1Bartolini F, Cappellini V, Mecocci A. Counting people getting in and out of a bus by real-time image-sequence processing[ J]. Image and Vision Computing, 1994, 12(1 ) : 36-41.
  • 2Zhang X W, Sexton G. Automatic human head location for pedestrian counting[ A]. In: Proceedings of the 6th International Conference on Image Processing and Its Applications[ C] , Dublin ,Ireland, 1997 : 2 : 535 -540.
  • 3于海滨,刘济林.应用于公交客流统计的机器视觉方法[J].中国图象图形学报,2008,13(4):716-722. 被引量:26
  • 4Lin S F, Chen J Y, Chao H X. Estimation of number of people in crowded scenes using perspective transformation [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 2001, 31 (6): 645 -654.
  • 5Beymer D. Person counting using stereo [ A ]. In : Proceedings of Workshop on Human Motion [ C ], Austin, Texas, USA, 2000: 127-133.
  • 6Narayanan K, Kumaran R, Gowdy J. Stereo-based elliptical head tracking [A] .In: Proceedings of European Signal Processing Conference [ C], Antalya, Turkey, 2005 : 1565-1568.
  • 7Huang X Y, Li L Y, Sim T. Stereo-based human head detection from crowd scenes [ A]. In: Proceedings of International Conference on Image Processing[ C ] , Singapore,2004 : 1353-1356.
  • 8Luo R J, Guo Y. Real-time stereo tracking of multiple moving heads [A]. In: Proceedings of IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems [C], Vancouver, BC, Canada,2001:55-60.
  • 9Brown M, Burschka D, Hager G. Advances in computational stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (8) : 993-1008.

二级参考文献10

  • 1Bartolini F,Cappellini V, Meeoeei A. Counting people getting in and out of a bus by real-time image-sequence processing[J]. Image and Vision Computing, 1994,12( 1 ) :36 - 41.
  • 2Zhang Xiao-wei, Sexton G. Automatic human head location for pedestrian counting [ A ]. In: Proceedings of Sixth International Conference on Image Processing and its Applications [ C ] , Dublin, German, 1997:535 - 540.
  • 3Lin Sheng-fuu, Chen Jaw-yeh Chao Hung-Xin. Estimation of number of people in crowded scenes using perspective transformation [ J ]. IEEE Transactions on Systems, Man and Cybernetics (Part A) ,2001, 31 ( 6 ) :645 - 654.
  • 4Kierkegaard P. A method for detection of circular arcs based on the Hough transform [ J ]. Machine Vision and Applications, 1992,5( 4 ) : 249 - 263.
  • 5Ioannou D, Huda W,Laine F. Circle recognition through a 2D Hough transform and radius histogramming [ J ]. Image and Vision Computing, 1999,17( 11 ) : 15 - 26.
  • 6Mohan R, Nevatia R. Perceptual organization for scene segmentation and deseription [ J ]. IEEE Transaetions on Pattern Analysis and Maehine Intelligenee, 1992,14( 6 ) :616 - 635.
  • 7Walker E L, Kang Hang-bong. Fuzzy measure of uncertainty in Perceptual Grouping[ A ]. In :Proceedings of the Third IEEE Conference on Fuzzy Systems [ C ], Orlando, American, 1994, 3:2020 - 2024.
  • 8Lowe D G. Three-dimensional object recognition from single Two- dimensional Images [ J ]. Artificial Intelligence, 1987, 31 ( 3 ) : 355 - 395.
  • 9汪亚明.基于动态图像序列的自动扶梯客流量的测量[J].华北工学院测试技术学报,2002,16(1):14-16. 被引量:9
  • 10李和恒,张星明.基于小波神经网络的头部检测技术[J].计算机工程与应用,2003,39(4):86-88. 被引量:6

共引文献25

同被引文献80

  • 1方晓莹.视频监控系统中的非线性校正算法[J].浙江国际海运职业技术学院学报,2005(3):24-27. 被引量:1
  • 2冯化纲,张涌,汤心溢.基于TDM总线的多处理器系统检测技术的研究[J].红外技术,2006,28(6):343-347. 被引量:2
  • 3李衡宇,何小海,吴炜,杨晓敏.基于计算机视觉的公交车人流量统计系统[J].四川大学学报(自然科学版),2007,44(4):825-830. 被引量:9
  • 4K Terada, D Yoshida, S Oe, et al. A Method of Counting the Passing People by Using the Stereo Images [C]//Proc. Intl. Conf. of Image Processing. Los Alamitos, California, USA: IEEE Computer Society, Oct, 1999, Vol. 2: 338-342.
  • 5Borislav Antic, Dragan Letic, Dubravko C et al. K-means Based Segmentation for Real-Time Zenithal People Counting [C]// IEEE International Conference on Image Processing, 2008. USA: IEEE, 2008.
  • 6Chen T, T Chen, Z Chen. An Intelligent People-Flow Counting Method for Passing Through a Gate [C]// Robotics, Automation and Meehaa'onies, 2006. Maryland Heights, USA: Elsevier, 2006: 1-6.
  • 7Viola P, M Jones. Rapid object detection using a boosted cascade of simple features [C]// CVPR, Kauai, Hawaii, USA: IEEE Computer Society, 2001:511-518.
  • 8Yu S ST Chen X P,Sun W P, et al. A robust method fordetecting and counting people [C] //Proceedings ofInternational Conference on Audio, Language and Image. LosAlamitos: IEEE Computer Society Press,2008: 1545-1549.
  • 9Chan A B, Liang Z S J, Vasconcelos N. Privacy preservingcrowd monitoring: counting people without people models ortracking [C] //Proceedings of IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos : IEEEComputer Society Press, 2008: 1-7.
  • 10Ge W N, Collins R T. Marked point processes for crowdcounting [C] //Proceedings of IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos: IEEEComputer Society Press,2009 : 2913-2920.

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部