摘要
The effect of autogeneous arc welding processes on tensile and impact properties of ferritic stainless steel conformed to AISI 409M grade is studied. Rolled plates of 4 mm thickness have been used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure, and fracture surface morphology of continuous current gas tungsten arc welding (CCGTAW), pulsed current gas tungsten arc welding (PCGTAW), and plasma arc welding (PAW) joints are evaluated and the results are compared. It is found that the PAW joints of ferritic stainless steel show superior tensile and impact properties when compared with CCG-TAW and PCGTAW joints, and this is mainly due to lower heat input, finer fusion zone grain diameter, and higher fusion zone hardness.
The effect of autogeneous arc welding processes on tensile and impact properties of ferritic stainless steel conformed to AISI 409M grade is studied. Rolled plates of 4 mm thickness have been used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure, and fracture surface morphology of continuous current gas tungsten arc welding (CCGTAW), pulsed current gas tungsten arc welding (PCGTAW), and plasma arc welding (PAW) joints are evaluated and the results are compared. It is found that the PAW joints of ferritic stainless steel show superior tensile and impact properties when compared with CCG-TAW and PCGTAW joints, and this is mainly due to lower heat input, finer fusion zone grain diameter, and higher fusion zone hardness.