期刊文献+

基于Fuzzy-ARTMAP网络的高光谱遥感图像分类方法 被引量:1

Hyperspectral imagery classification based on a Fuzzy-ARTMAP neural network
下载PDF
导出
摘要 神经网络是一种重要的高光谱图像分类方法。本文提出了四边形隶属函数和Fuzzy-ARTMAP神经网络相结合的高光谱图像分类方法。该方法不局限与隶属度函数的选择,使网络更具有广泛的适用性。将其应用于高光谱图像的分类中,其分类精度高于ARTMAP神经网络,且性能稳定。 Neural network is one of methods in remote sensing image classification. This paper presents a classifica, tion method that combines quadrilateral membership function with fuzzy - ARTMAP neural network. This method isn' t limited to choosing the membership function. So it make the applicability of network extensive. This method is used in the hyperspectral remote sensing image classification. The accuracy of classification is higher than ARTMAP network' s.
作者 赵春晖 刘凡
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第6期846-849,869,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(60672034) 高等学校博士学科点基金资助项目(20060217021) 黑龙江省自然科学基金资助项目(ZJG0606-01)
关键词 Fuzzy-ARTMAP神经网络 隶属度函数 高光谱图像分类 Fuzzy- ARTMAP neural network membership function hyperspectral remote sensing image classification
  • 相关文献

参考文献5

  • 1Barnes M, John R. Application of fuzzy ART(MAP) and MinMax (MAP) neural network to radiographic image classification[ J]. Artificial Intelligence in Medicine, 1997, ( 11 ) :241 - 263.
  • 2Carpenter G A. ART neural networks for remote sensing: vegetation classification from landsat TM and terrain data[ J]. IEEE Trans on Geosci and Remote sensing, 1997, 35(2) : 308 -325.
  • 3张钊,裴燕玲,郑爱红.任意隶属度函数模糊系统的逼近特性[J].中国工程科学,2005,7(8):47-50. 被引量:8
  • 4王士同.神经模糊系统及应用[M].北京:北京航空航天大学出版社,1998.
  • 5张钧萍,张晔,周廷显.基于信息融合的超谱图象分类方法研究[J].哈尔滨工业大学学报,2002,34(4):464-468. 被引量:5

二级参考文献15

  • 1[1]JIMENEZ L O. Classification of hyperdimensional data based on feature and decision fusion approches using projection pursuit, majority voting, and neural networks[J]. IEEE Trans G R S, 1999, 37(3): 1360-1366.
  • 2[2]BENEDIKTSSON J A. Classification of multisource and hyperspectral data based on decision fusion [J]. IEEE Trans G R S, 1999, 37(3): 1367-1377.
  • 3[3]WILSON T A. Perceptual - based image fusion for hyperspectral data[J]. IEEE Trans G R S, 1998, 35(4):1007-1017.
  • 4[4]HARSANYI J C, CHANG C I. Hyperspectral Image classification and dimensionality reduction: an orthogonal subspace projection approach [J]. IEEE Trans G R S, 1994, 32(4): 779-785.
  • 5[5]JIA Xiuping, RICHARDS J A. Segmented principal components transformation for efficient hyperspectral remote -sensing image display and classification [J]. IEEE Trans G R S, 1999, 37(1): 538-542.
  • 6[6]ZHANG Ye. Adaptive subspace decomposition for hyperspectral data dimensionality reduction [A]. ICIP99 Proceedings[C]. [ s. l. ]: [ s. n. ], 1999. 326-329.
  • 7[7]ZHANG Junping, ZHANG Ye. Fusion classification of hyperspectral image based on adaptive subspace decomposition[A]. ICIP2000 Proceedings[C]. [ s. l. ]: [ s.n. ], 2000, 472-475.
  • 8K Tanaka, T Kosaki. Design of a stable fuzzy controller for an articulated vehicle [ J ]. IEEE Trans on Systems Man and Cybernetics, 1997, 27 (3): 552~ 558.
  • 9Wing. Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control [ J ]. IEEE Trans on Fuzzy Systems, 1998, 6 (2): 226~234.
  • 10Wang L X, Mendel J M. Fuzzy basis functions,universal approximation, and orthogonal least squares learning [J]. IEEE Trans on Neural Networks, 1992,3 (5): 807~817.

共引文献13

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部