摘要
本文通过破开算子方法,把二维输运问题的控制方程破开为对流问题和扩散问题。在任意四边形网格的离散下,用特征线法解对流问题,并采用伽辽金加权余量法,从而有效地减少插值所引起的数值阻尼,提高计算精度。用有限单元法和迭代计算格式解扩散问题。由于采用了辛普生积分公式,在每个时间步长都不需要求逆矩律,节省了计算时间。算例表明,本文数值模拟结果与精确的理论解吻合较好。
An operotor-spliting method for the two -dimensional transport equation is developed. In the convection phase, a Galerkin weighted residual approach is employed to minimize the error generated by interpolation. Computer execution time is reduced by adopting Simpson's rule for some of the numerical integrations and by using an iteration stategy in the dispersion phase, thus avoiding the matrix inversion procedure in each time step. Several numerical examples are presented. The numerical results are coincident with the exact analytical solutions.
出处
《计算物理》
CSCD
北大核心
1990年第4期415-423,共9页
Chinese Journal of Computational Physics
关键词
数值模拟
输运方程
破开算子法
numerical simulation, transport equation, operator -spliting method, finite elements.