期刊文献+

可满足性问题全部解的求解算法 被引量:3

Algorithm for finding all-solutions of satisfiablity problem
下载PDF
导出
摘要 SAT问题在人工智能、计算机基础理论研究和人工智能等领域有着广泛的应用,近年来,证明该问题的可满足性取得了巨大的成功,但在求出SAT问题的所有解方面还有待进一步研究。利用一个简单的变换,将可满足性(SAT)问题转化为多项式形式,然后根据命题逻辑的性质以及多项式的性质,得到一个求解出SAT问题所有解的算法。 Satisfiability problem has been widely used in many fields such as artificial intelligence,computer theory research and computation theory.Many algorithms about this NP-hard problem have been built,but how to get all of the truth assignments is still difficult.By establishing the correspondence between the primitive operation in polynomial and clause solution in SAT,an efficient algorithm has been built to obtain all solutions which satisfied the problem.Experiment shows that the new algorithm is feasible.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第3期35-37,共3页 Computer Engineering and Applications
基金 国家重大基础研究计划项目(No.2004CB318003) 华东师范大学2008年优秀博士研究生培养基金(No.20080029)~~
关键词 可满足性问题 局部搜索 多项式扩展 自动求解 Sattifiability(SAT) problem local search polynomial expanding automatic solve
  • 相关文献

参考文献19

  • 1Cook S A.The complexity of theorem-proving procedures[C]//Proc 3rd ACM Symposium on Theory of Computing, 1971:151-158.
  • 2Davis M,Putnam H.A computing procedure for quantification theory[J].ACM J, 1960,7(3 ) :201-215.
  • 3Davis M,Logemann G,Loveland D.A machine program for theorem proving[J].Communications of the ACM, 1962,5(7): 394-397.
  • 4Freeman J W.Improvement to propositional satisfiability search algorithm[D].Philadelphia,PA,USA:University of Pennsylvania, 1995.
  • 5Hooker J N,Vinay V.Branching rules for Satisfiability[J].J of Automated Reasoning, 1995,15(3):359-383.
  • 6Zhang H.SATO:an efficient propositional prover[C]//LNAI 1249:Proc CADE-14,1997:272-275.
  • 7Benhamou B, Sais L.Tractability through symmetries in propositional calculus[J].JAR, 1994, 12( 1 ) : 89-102.
  • 8Bohm M,Speckenmeyer E.A fast parallel SAT-solver efficient workload balancing[J].Annals of Mathematics and Artificial Intelligence, 1996, 17(3/4) : 381-400.
  • 9Zhang H,Bonacina M P,Hasang J.PSATO:a distributed propositional prover and its application to quasigroup problem[J].J of Symbolic Computation, 1996,21 : 543-560.
  • 10Zhang Kai-rong,Nagamatu M.Solving SAT with mixed parallel execution[J].Internation Congress Serier,2006,1291 : 197-200.

二级参考文献6

共引文献26

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部