期刊文献+

一种基于自适应核主元分析的故障检测方法 被引量:5

An Fault Detection Method Based on Kernel Principal Component Analysis
下载PDF
导出
摘要 针对用一个时不变的固定KPCA模型来监控航空发动机这类时变系统的性能时,可能会引起故障检测、诊断的偏差的问题,提出了基于自适应核主元分析的航空发动机故障检测方法。该方法利用滑动窗口的机制,通过不断加入实时采集的数据,自动更新监控模型,使KPCA监控模型能适应这种时变系统的正常参数漂移。对某型涡扇发动机进行故障检测的应用结果表明,与静态KPCA检测模型相比,自适应KPCA检测模型具有更好的故障检测效果,可提高故障检测的快速性及准确率。 In order to solve the problem that the deviation of detection and diagnosis is brought when a fixed KPCA model is used to monitor the performance of varying system(such as aeroengine),a novel fault detection method based on adaptive kernel component analysis(AKPCA)is put forward.The proposed method automatically updatas KPCA model by continuously adding online data based on moving window.The updated KPCA model can match the normal parameter excursion of varying system.The practical application results show that the performance of AKPCA is better than that of fixed KPCA,and AKPCA can enormously increase the rapidity and accuracy of fault-detecting.
出处 《控制工程》 CSCD 2007年第S3期80-83,共4页 Control Engineering of China
基金 军队重点科研基金(2003KJ01705)
关键词 航空发动机 故障检测 核主元分析法 自适应建模 aeroengine fault derection kernel principal component analysis adaptive modeling
  • 相关文献

同被引文献43

  • 1王涛,李艾华,王旭平,蔡艳平.基于SVDD与距离测度的齿轮泵故障诊断方法研究[J].振动与冲击,2013,32(11):62-65. 被引量:9
  • 2谢磊,王树青.递归核PCA及其在非线性过程自适应监控中的应用[J].化工学报,2007,58(7):1776-1782. 被引量:12
  • 3蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 4Nguyen V. H., Golinval J. Fault detection based on kernel principal component analysis[J]. Engineering Structures, 2010, 32(11): 3683-3691.
  • 5Zhu Z B, Song Z H. Fault diagnosis based on imbalance modified kernel fisher discriminant analysis[J]. Chemical Engineering Research & Design, 2010, 88(8): 936-951.
  • 6Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multiple operation modes through multiple component analysis models[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 7025-7035.
  • 7Natarajan S, Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process[J]. Chemical Engineering Research & Design, 2010, 88(5): 572-591.
  • 8Scholkopf B, Smola A, Muller K R. Kernel principal component analysis[C]. Advances in kernel methods-support vector learning. Cambridge: MIT Press, 1999: 35-42.
  • 9Baudat G, Anouar F. Kernel-based methods and function approximation[C]. International Joint Conference on Neural Networks. New York: IEEE, 2001: 56-60.
  • 10Frederick D K, Decastro J A., the Commercial Modular Litt J S. User's Guide for Aero-Propulsion System Simulation(C-MAPS S)[EB/OL]. http ://gltrs.grc.nasa.gov, 2007.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部