摘要
研究了一个修理工的单部件可修系统.该系统在大修时间间隔T内故障时进行小修,达到T时进行大修,且无论小修还是大修均不能修复如新.利用几何过程,以系统大修次数N和大修时间间隔T为更换策略,选择最优策略(N,T),使系统经长期运行单位时间的期望费用最小.
A repairable system consisting of single component and one repairman is studied.We suppose T is the interval of the detailed repairs.Simply repairs is considered during the time of T,A detailed repair is made when the time arrives T.N is the number of detailed repairs.The two variable optimal replacement policy(N,T)is discussed by using the geometric process.The problem is to determine the optimal replacement policy(N,T)~* such that the long-run expected cost per unit time is minimized.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2007年第S1期389-391,共3页
Journal of University of Electronic Science and Technology of China
基金
四川省教育厅自然科学基金重点项目([2006]A067)
关键词
几何过程
策略
更新过程
可修系统
geometric process
policy
renewal process
repairable system