摘要
用多步Runse-Kutta方法去解如下形式的试验方程其中y(t)=(y1(t),y2(t),…,yN(t))T,L和M是复N×N矩阵,τ>0,Φ(t)是一个已知向量函数,当t≥0时y(t)是未知的.主要解决了延时微分方程多步Runge-Kutta方法的P-稳定性.
In this paper, we deal with the P-stability of Multistep Implicit Runge-Kutta Methods (MIRK ) for the numerical solution of systems of delay differential equations. We focus on the stability behaviour of MIRK in the solution of the following testsystems with a delay term: y' (t) = Ly (t) + My (t-T), t≥0. y (t) = Φ(t), t ≤0.Where y (t) = (y1 (t),y2(t), …,yN (t) )T, L and M are constant complex N x N matrices, T τ≥0, Φ(t) denotes a given vector value function and y (t) is unknown for t ≥0.
出处
《上海师范大学学报(自然科学版)》
1997年第4期11-16,共6页
Journal of Shanghai Normal University(Natural Sciences)