期刊文献+

攀钢高炉钛渣对出铁沟用耐火骨料侵蚀的相图热力学模拟分析 被引量:6

Corrosion simulation of Pansteel blast furnace TiO_2-containing slag to refractory aggregates in iron runner
下载PDF
导出
摘要 选取高炉出铁沟耐火材料常用的5种骨料(分别为棕刚玉、电熔刚玉、亚白刚玉、富铝尖晶石和特级矾土,粒度均为5~10 mm)和攀钢高炉钛渣(w(TiO2)=26%)作为研究对象,通过相图热力学计算和静态坩埚侵蚀试验对比研究,探讨了攀钢高炉钛渣条件下出铁沟耐火骨料的选择。热力学计算表明,电熔刚玉具有良好的抗钛渣侵蚀能力,而特级矾土骨料被侵蚀后形成的新渣相黏度高,有利于阻止渣对耐火材料的进一步渗透;而静态坩埚试验结果难以反映和判断材料高温下侵蚀的反应过程。因此,相图热力学计算技术可作为分析耐火材料侵蚀情况的可靠方法和手段。 Five kinds of aggregates ( brown corundum, fused corundum, sub-white corundum, alumina-rich spinel and special grade bauxite,the particle size were 5 - 10 mm) and BF TiO2-containing slag of Pansteel were chosen for comparing according to thermodynamics phase calculation and static crucible corrosion test. The results showed that fused corundum had the best corrosion resistance to the BF TiO2-containing slag;and the new slag phase formed by special grade bauxite reacting with slag had higher viscosity, which could prevent further penetration of the slag into refractories. However, the static crucible test couldn't reflect and distinguish accurately the high temperature reaction behavior. So phase thermodynamic calculation technique is a promising method to analyze and predict the phase evolution of refractories with slag.
出处 《耐火材料》 CAS 北大核心 2009年第2期145-148,共4页 Refractories
关键词 相图热力学模拟 高炉钛渣 出铁沟 耐火材料 Phase thermodynamic simulation, Blast furnace TiO2-containing slag Iron runner, Refractories
  • 相关文献

参考文献6

二级参考文献15

  • 1德国[西德]钢铁工程师协会编 王俭 彭育强 毛裕文译 王鉴校.渣图集[M].北京:冶金工业出版社,1989.109,102.
  • 2马家源主编.高炉冶炼钒钛磁铁矿理论与实践[M].北京:冶金工业出版社,1999.264-271.
  • 3Vladimir N Vapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,1999..
  • 4Zhang Zhiping, Huang Huihuang, Huang Zh aohui. SiAlON bonded SiC refractories for blast furnaces. Interceram, 1993,42 ( 5 ) :292 - 297.
  • 5Low conductivity blast furnace refractories. Steel Times, 1993,1:49.
  • 6VladimirNVapnik 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,1999..
  • 7Li Yawei,Zhang Xin,Jin Shengli ,et al. Corundum castables containing nitrogen for purging plug in ladle.Proceedings of 44th International Colloquium on Refractories,Aachen, Germany,2001,9:26 - 27.
  • 8Vladimir N Vapnik. The nature of statistical learning theory. Berlin,Springer, 1995.
  • 9Nello Cristianini, John Shawe - Taylor. An introduction to support vector machines and other kernel-based learning methods.Cambridge University Press,2000.
  • 10李亚伟,李楠,王斌耀,刘静,陈方玉.β-赛隆(Sialon)/刚玉复相耐火材料研究[J].无机材料学报,2000,15(4):612-618. 被引量:31

共引文献17

同被引文献100

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部