摘要
针对以往粒子群优化算法多样性差且易局部收敛的不足,提出改进综合学习粒子群优化(CLPSO)算法的最小方差优先自适应变异策略,设计自适应变异综合粒子群优化(CLPSO-M)算法。多个标准测试问题的对比实验数据表明,CLPSO-M算法比CLPSO算法的全局搜索能力更强,求解效果更稳定。
Classical Particle Swarm Optimization(PSO) algorithm has bad diversity and is easy to converge locally. This paper puts forward a smallest- variation-first mutation to design an improved CLPSO algorithm named as CLPSO-M algorithm, The experimental result of solving the benchmark problems indicates that CLPSO-M performs better and more steadily than CLPSO.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第7期170-171,202,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60803052)
关键词
群体智能
粒子群优化算法
综合学习
最小方差优先
自适应变异
swarm intelligence
Particle Swarm Optimization(PSO) alogorithrn
comprehensive learning
smallest variation first
adaptive mutation