期刊文献+

具有感染年龄结构的CD4^+T-细胞感染HIV病毒模型分析 被引量:10

Analysis of an Age-structured Model of HIV Infection of CD4^+T-cells
原文传递
导出
摘要 本文建立和研究一类具有感染年龄结构的CD4^+T-细胞感染HIV病毒的动力学模型.得到决定该模型的未感染平衡点和感染平衡点的存在性和局部渐近稳定性条件,即当一个感染细胞在其整个感染期间产生病毒的总数不超过某一个阈值时,系统总存在局部渐近稳定的未感染平衡点;当一个感染细胞在其整个感染期间产生病毒的总数超过这一阈值时,未感染平衡点不稳定,此时存在局部渐近稳定的感染平衡点. In this paper, we formulate and analyze the dynamics behavior of an agestructured model of HIV infection of CD4^+ T-cells. A threshold parameter is given, which determine the existence and stability of the uninfected and the infected steady state. That is, when the total number of virus produced by an infected cell is less than the threshold, the system exists only an uninfected steady state and it is locally asymptotically stable, when the total number of virus produced by an infected cell is greater than the threshold, the uninfected steady state is unstable, and the system exists an infected steady state, which is locally asymptotically stable.
出处 《应用数学学报》 CSCD 北大核心 2009年第2期207-224,共18页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(No.10671166No.10371105) 河南省杰出青年科学基金(No.0312002000)资助项目.
关键词 感染年龄结构 HIV病毒 阈值 感染平衡点 稳定性 age-structured HIV model threshold infected steady state stability
  • 相关文献

参考文献34

  • 1Anderson R M. Mathematical and Statistical Studies of the Epidemiology of HIV. AIDS, 1990, 4: 107-121
  • 2Anderson R M, MAy R M. Complex Dynamical Behavior in the Interaction Between HIV and the Immune System. In: A.Glodbeter(Ed.), Cell signalling: From Experiment to Theoretical Models, Academic Press, New York, 1989, 335-348
  • 3Bailey J J, Fletcher J E, Chuck E T, Shrager R I. Akinetic Model of CD4^+ Lymphocytes with the Human Immunodeficiency Virus (HIV). Biosystems, 1992, 26:177-192
  • 4Bonhoeffer S, May R M, Shaw G M, Nowak M A. Virus Dynamics and Drug Therapy. Proc. Nat. Acad. Sci. USA, 1997, 94:6971-6985
  • 5De Boer R J, Perelson A S. Target Cell Limited and Immune Control Models of HIV Infection: a Comparison. J. Theor. Biol., 1998, 190:201-214
  • 6Hraba T, Dolezal J, Celikovsky S. Model-based Analysis of CD4^+ Lymphocyte Dynamics in HIV Infected Individuals. Immunology, 1990, 181:108 122
  • 7Intrator N, Decampo G P, Cooper L N. Analysis of Immune System Retrovirus Equations. In: A.S.(Ed.), Theoretical Immunology,2, Addison-Wesley, Redwood city, CA,1988, 85-101
  • 8Kirschner D E, Perelson A S. A Model for the Immune System Response to HIV: AZT Treatment Studies. In: O. Arino, D.Axelrod, M.Kimmel, M.Langlais (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Vol.1, Theory of Epidemics, Wuerz, Winnipeg, Canada, 1995, 295-311
  • 9Kirschner D E, Lemhart S, Serbin S. Optimal Control of the Chemotherapy of HIV. J. Math. Biol., 1997, 35:775-792
  • 10Kirscher D E, Webb G F. A Model for the Treatment Strategy in the Chemotherapy of AIDS. Bull. Math. Biol., 1996, 58:367-390

同被引文献84

  • 1韩丽涛,阮玉华,周义仓,马知恩,邵一鸣.西昌市静脉吸毒人群HIV/AIDS流行趋势分析[J].中国艾滋病性病,2004,10(4):257-259. 被引量:16
  • 2刘旭阳.一类多传染阶段的艾滋病模型[J].数理医药学杂志,1996,9(4):293-296. 被引量:6
  • 3Craig I,Xia X.Can HIV/AIDS be controlled[J].IEEE Control Syst.Mag.,2005,25:80-83.
  • 4Khalil H.Nonlinear Systems[M].Englewood Cliffs:Prentice Hall,2002.
  • 5Ko J,Kim W,Chung C.Optimized structural interpretation for HIV therapy and its performance analysis on controllability[J].IEEE Trans.Biomed.Eng.,2006,53:380-386.
  • 6Friedland B.Advanced Control System Design[M].Englewood Cliffs:Prentice Hall,1996.
  • 7Kremling A,Saez-Rodriguez J.Systems biology-An engineering perspective[J].Journal of Biotechnology,2007,129:329-351.
  • 8Sontag E D.New directions in control theory inspired by systems biology[J].Systems Biology,2004,1:9-18.
  • 9Sontag E D.Molecular system biology and control[J].Eur.J.Control,2005,11:396-435.
  • 10Francisco J Q,Mauricio F,Howard L.Systems biology approaches for the study of multiple sclerosis[J].Journal of Cellular and Molecular Medicine,2008,12(4):1087-1093.

引证文献10

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部