摘要
论述了用位置、分散、偏度和峰度4个特性参数描述分配曲线形态的必要性.提出了描述分配曲线形态的新参数:四分位偏度系数和类峰度系数K.直接用分选密度δp、可能偏差Ep或不完善度I、四分位数偏度系数(x75+x25-2x50)/(x75-x25)和类峰度系数K作模型参数,建立了分配曲线数学模型.用这4个参数不仅能描述分配曲线的整个形态,而且能计算出分配曲线的概率平均密度、标准差和偏度等.模型对实际分配率数据有相当好的拟合度.
The necessity of using location, spread, skewness and kurtosis as four characteristic parameters to describe the distribution curve is depicted. Two new parameters, namely, the quartile coefficient of skewness, S kq , and kurtosis, K , are proposed. The separation density, δ p, ecart probable moyen, E p, or imperfection, I , the quartile coefficient of skewness, S kq , and kurtosis, K , are directly chosen as parameters for setting up a mathematical model of distribution curve. With these parameters not only the characteristics of the distribution curve can be described,but also the probability mean density, the standard deviation, skewness of distribution curve can be deduced as well. The data calculated by this model fit well with the measured data. In many cases they are more accurate than other models.
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
1998年第2期202-207,共6页
Journal of China Coal Society
关键词
分配曲线
数学模型
特性参数
选煤
分选
distribution curve, mathematical model, characteristic parameters, skewness