期刊文献+

基于粒子滤波的捷联成像导引头视线角速率估计 被引量:11

Strapdown Imaging Seeker Los Rate Estimation Based on Particle Filter
下载PDF
导出
摘要 提出了一种基于粒子滤波的捷联成像导引头视线角速率的估计方法。由于捷联成像导引头状态方程和观测方程的强非线性特点以及观测量中较强的非高斯测量噪声,扩展卡尔曼滤波(EKF)方法不能完全满足滤波精度要求。与扩展卡尔曼滤波相比,粒子滤波(PF)是一种在非线性和非高斯情形下进行状态估计的强有力方法。采用粒子滤波对捷联成像导引头的视线角速率进行估计,仿真结果表明,粒子滤波方法可以有效地提高视线角速率的估计精度。 A method to estimate the line of sight rate of strapdown imaging seeker based on particle filter was presented. As there were high nonlinearity in both process and measurement equations and more serious non-Gaussian noise in the measurements, the extended Kalman filter(EKF) could not completely meet the requirements of filtering. Compared with EKF, particle filter(PF) was a congruent method for states estimating in the conditions of nonlinearity and non- Gaussian noise. PF was applied to estimate the LOS rate of strapdown imaging seeker, simulation results show that PF can improve the precision of LOS rate estimation.
机构地区 哈尔滨工业大学
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第2期91-94,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 粒子滤波 捷联成像导引头 视线角速率 particle filter strapdown imaging seeker line of sight rate
  • 相关文献

参考文献5

  • 1姚郁,章国江.捷联成像制导系统的若干问题探讨[J].红外与激光工程,2006,35(1):1-6. 被引量:49
  • 2Gordon N, Salmond D. Novel approach to non-linear and non-Gaussian Bayesian state estimation[j]. Proc of Institute Electric Engineering, 1993, 140 (2) : 107--113.
  • 3胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 4Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems[J]. J of the American Statistical Association, 1998, 93 (5):1032--1044.
  • 5GUO-JIANG ZHANG, YU YAO. Line of sight rate estimation of strapdown imaging guidance system based on unscented kalman filter[C]// Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou: 18 --21 August 2005 : 1574--1578.

二级参考文献16

共引文献340

同被引文献78

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部