摘要
对多层前向网络的最小二乘逼近机理进行了系统的分析,指出隐层节点函数特性的特定选择是构成网络有效逼近能力最关键的因素。分析了增加隐层数和增加隐节点数在改进网络逼近效果方面不同的作用机理,给出了前向网络拓扑结构学习的通用算法和其对应的神经生物学机制。
A systematic analysis is made on the least square approximation mechanism of multilayer feedforward neural networks,and the following conclusion is drawn that the types of node functions in hidden layers are the most important factor for forming good approximation capability of networks Besides these,the different acting mechanisms of adding number of hidden layers and adding number of hidden nodes for improving approximation results of neural network is analyzed,and a general learning algorithm of network topology is suggested,the corresponding mechanism of neurobiology is supposed
出处
《通信学报》
EI
CSCD
北大核心
1998年第3期29-34,共6页
Journal on Communications
基金
国家自然科学基金
航空科学基金
中国博士后基金
863计划