期刊文献+

一个基于差别矩阵的属性约简改进算法 被引量:4

An Updated Algorithm for Attribute Reduction Based on Discernibility Matrix
下载PDF
导出
摘要 介绍了决策表的基于差别矩阵的属性约简方法,针对AM-RASR约简算法的不足,将叶东毅的对不相容决策表的求核思想融合进来,提出一个改进的算法,新算法通过在扫描数据过程中用冲突对象对差别集进行修正,可以有效地减少数据的存储量和计算量,并能适用于不相容决策表.最后通过一个UCI数据集的实验说明改进的算法是有效的. Attribute reduction is one of the most important content of the Rough Set Theory. This paper analyzes attribute reduction for decision table based on discernibility matrix and YE's thought for calculating the core of inconsistent decision tables. As AM-RASR algorithm needs too much storing capacity and doesn' t support inconsistent decision tables, and YE's method needs much more computing, this paper presents an improved algorithm. Through revising discernibility collection with conflicting element when scanning data, which can cut down the original algorithm's computing and storing capacity, and can be applied in inconsistent decision tables. Fianlly, through an experiment with UCI data sets, the paper explains the effectiveness of the improved algorithm.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期85-88,共4页 Journal of Hunan University:Natural Sciences
基金 湖南省科技计划资助项目(2007JT1024)
关键词 约简 差别矩阵 粗糙集 reduction discernibility matrix rough set
  • 相关文献

参考文献7

二级参考文献38

共引文献284

同被引文献44

  • 1高赟,侯媛彬.连续量信息表决策值的离散化方法[J].西安科技大学学报,2004,24(4):486-491. 被引量:7
  • 2叶东毅.不相容决策表分解的若干性质[J].小型微型计算机系统,2006,27(4):695-697. 被引量:4
  • 3刘菁,解大,王丽芳.基于多知识库与粗糙集理论的变电站故障诊断方法[J].华东电力,2006,34(12):27-32. 被引量:3
  • 4孙卫祥,陈进,吴立伟,伍星.基于PCA与决策树的转子故障诊断[J].振动与冲击,2007,26(3):72-74. 被引量:11
  • 5Pawlak Z.Rough sets[J].International Journal of Computer and Information Science,1982,11:341-356.
  • 6Quinlan J R.Induction of decision trees[J].Machine Learning,1986 (1):81-106.
  • 7David Antory,Uwe Kruger,Irwin G W,et al.Industrial process monitoring using nonlinear principal component models[C].//Second IEEE International Conference on Intelligent Systems.Kine:2004:293-298.
  • 8Choi Sang Wook,Lee Changkyu,Lee Jong-Min,et al.Fault detection and identification of nonlinear processes based on kernel PCA[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):55-67.
  • 9Choi Sang Wook,Lee In-Beum.Nonlinear dynamic process monitoring based on dynamic kernel PCA[J].Chemical Engineering Science,2004,59(24):5897-5908.
  • 10Thaddeus T Shannon,David Abercrombie,et al.Improved process monitoring with independent components[C].//IEEE/SEMI Advanced Semiconductor Manufacturing Conference.2004:170-175.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部