期刊文献+

希尔伯特边际谱在语音情感识别中的应用 被引量:6

Application of Hilbert marginal spectrum in speech emotion recognition
下载PDF
导出
摘要 利用希尔伯特-黄变换(Hilbert-Huang Transform,HHT)对情感语音进行处理,得到其边际谱,然后对比分析四种情感即高兴、生气、厌恶、无情感语音信号边际谱的特征,提出四个特征量:子带能量(SE)、子带能量的一阶差分(DSE)、子带能量倒谱系数(SECC)、子带能量倒谱系数的一阶差分(DSECC)用于情感识别。用它们作说话人无关,文本无关的语音情感识别,得到最高90%的识别率,比基于傅立叶变换的梅尔频率倒谱系数(MFCC)高22个百分点。实验结果表明,基于HHT边际谱的特征能够较好地反映语音信号中的情感信息。 Marginal spectrum of the emotional speech is obtained through Hilbert-Huang Transform. Speech signals of four different emotions, namely happy, angry, boring and natrual, are analyzed contrastively focusing on the characteristics of the marginal spectrum. Then four features: SE, DSE, SECC and DSECC are extracted for emotion recognition. Finally speaker-independent and text-independent emotion recognitions are simulated by using these features respectively, which gains the best recognition rate of 90%, which is 22 percentage higher than Fourier Transform based feature MFCC. Thus, conclusion is drawn that HHT marginal spectrum can well reflect the emotional information in speech.
出处 《声学技术》 CSCD 2009年第2期148-152,共5页 Technical Acoustics
关键词 情感识别 边际谱 HHT emotion recognition marginal spectrum HHT
  • 相关文献

参考文献13

  • 1Yi Linlin, Wei Gang. Speech emotion recognition based on HMM and SVM[A]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics[C]. Guangzhou. 2005: 18-21.
  • 2Chul Min Lee, Shrikanth S.Narayanan. Toward detecting emotions in spoken dialogs[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(1): 230-235.
  • 3Laurence Vidrascu, Laurence Devillers. Detection of real-life emotions in call centers[A]. INTERSPEECH 2005[C]. 2005, 10: 1841-1844.
  • 4Nicholson J, Takahashi K, Nakatsu R. Emotion recognition in speech using neural networks[J]. Neural Computer & Applic, 2000, 9: 290-296.
  • 5詹永照,曹鹏.语音情感特征提取和识别的研究与实现[J].江苏大学学报(自然科学版),2005,26(1):72-75. 被引量:16
  • 6陈建厦,李翠华.语音情感识别的研究进展[J].计算机工程,2005,31(13):35-37. 被引量:8
  • 7TAO Jianhua, KANG Yongguo. Features importance analysis for emotional speech classification[J]. ACII 2005, 37: 449-457.
  • 8Vladimir, Hozjan Zdravko Kacic. Context-independent multilingual emotion recognition from speech signals[J]. International Journal of Speech Technology, 2003, 6:311-320.
  • 9樊长博,张来斌,王朝晖,冀树德.基于EMD与功率谱分析的滚动轴承故障诊断方法研究[J].机械强度,2006,28(4):628-631. 被引量:21
  • 10李凌,曾以成,雷雄国.EMD在说话人辨认中的应用[J].湘潭大学自然科学学报,2006,28(3):108-111. 被引量:6

二级参考文献34

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2李嶷,熊国良,张龙.经验模式分解法(EMD)在滚动轴承故障诊断中的应用[J].华东交通大学学报,2005,22(1):135-138. 被引量:6
  • 3赵赏鑫,张来斌,王朝晖,刘桂春.基于最大李雅普诺夫指数的滚动轴承故障诊断研究[J].石油大学学报(自然科学版),2005,29(4):80-83. 被引量:5
  • 4屈微,刘贺平.基于独立分量分析和矢量量化的说话人识别[J].计算机应用,2005,25(10):2401-2403. 被引量:1
  • 5Ozkurt T E, Akgul T. Robust Text-independent speaker identification using bispectrum slice, signal processing and communications applications conference[A]. 2004. Proceedings of the IEEE 12th[C]. 2004, 418-421.
  • 6Deng J, Zheng T F, Song Z J, et al. Using predictive differential power spectrum and subband mel-spectrum centroid for robust speaker recognation in stationary noises[A]. The 4th International Conference on Machine Learning and Cybernetics[C]. 2005, 8: 4846-4851.
  • 7Hyvarinen A. New approximatioils of differential entropy for independent component analysis and projection pursuit [J]. Advance in Neural Information Processing Systems, 1998, 10: 273-279.
  • 8Hyvarinen A. Fast and robust tided-point algorithm for independent component analysis[J]. IEEE Trans on Neural Networks, 1999, 10(3): 626-634.
  • 9Jang Gil-Jin, Yun Seong-Jin, Oh Yung-Hwan. Feature vector transformation using independent component analysis and its application to speaker identification[J]. Euro Speech, 1999, 7(6): 767-770.
  • 10NEW Tin Law, FOO Say Wei, SILVA Liyanagec De.Speech emotion recognition using hidden Markov models[J]. Speech Communication, 2003, 41 : 603 - 623.

共引文献56

同被引文献44

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部