期刊文献+

局部均值分解与经验模式分解的对比研究 被引量:134

Comparison between the methods of local mean decomposition and empirical mode decomposition
下载PDF
导出
摘要 介绍了一种新的非平稳信号分析方法——局部均值分解(Localmean decomposition,简称LMD)。LMD方法可以自适应地将任何一个复杂信号分解为若干个具有一定物理意义的PF(Product function)分量之和,其中每个PF分量为一个包络信号和一个纯调频信号的乘积,从而获得原始信号完整的时频分布。本文首先介绍了LMD方法,然后将LMD方法对仿真信号进行了分析,取得了满意的效果,最后将其和经验模式分解EMD(Empiricalmode decomposition)方法进行了对比,结果表明在端点效应、迭代次数等方面LMD方法要优于EMD方法。 A new nonstationary signal analysis method,namely,the local mean decomposition(LMD) was introduced.By using LMD,any complicated signal can be decomposed into a set of product functions whose instantaneous frequencies own certain physical sense and each of which is a product of an envelope signal and a purely frequency modulated signal,thereby the complete time-frequency distribution of the original signal can be obtained.In the paper,the simulated signal was analyzed by LMD and satisfied results have been obtained.The LMD method was then compared with EMD method and the results indicate that LMD is superior to EMD in some respects,such as in boundary effect and iterative times.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第5期13-16,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50775068) 中国博士后科学基金(20080430154) 湖南省博士后科学基金(2008RS4004)
关键词 局部均值分解 经验模式分解 非平稳信号 端点效应 local mean decomposition empirical mode decomposition nonstationary signals boundary effect
  • 相关文献

参考文献7

  • 1Zhao Yunxin, Les E At- las, Robert J Marks. The use of cone-shaped kernels for generalized timefrequency representation of nonstationary signals [J]. IEEE Trans. On ASSP, 1990, 38 (7): 1084 - 1091.
  • 2Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [J]. Proe. R. Soe. Lond. A, 1998, 454 : 903 - 994.
  • 3Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum [ J]. Annu. Rev. Fluid Mech., 1999, 31:417-455.
  • 4程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 5Loh C H, Wu T C, Huaug N E. Application of the empirical mode decomposition - Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response [ J]. Bulletin of the Seismological Society of American, 2001, 91(5): 1339-1352.
  • 6Marcus D, Torsten S. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves [ J ]. Ocean Engineering, 2004, 31 ( 14 - 15) : 1783 - 1834.
  • 7Smith J S. The local mean decomposition and its application to EEG perception data [ J ]. Journal of the Royal Society Interface, 2005, 2 (5) : 443 - 454.

二级参考文献11

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2[1]Randall R B. A new method of modeling gear faults. ASME Journal of Mechanical Design, 1982, 104:259~267
  • 3[2]Radcliff G A. Condition monitoring of rolling element bearings using the enveloping technique. Machine Cond- ition Monitoring, Mechanical Engineering Publication Ltd., London:1990:55~67
  • 4[6]Randall R B. Hilbert transform techniques in machine diagnostics. In:IFToMM International Conference on Rotor dynamics, Tokyo, 1986:409~420
  • 5[7]Petros M, James F K, Thomas F Q. On amplitude and frequency demodulation using energy operator. IEEE Transactions on Signal Processing, 1993, 41(4):1 532~1 550
  • 6[8]Alexandros P, Petros M. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Processing, 1994, 37(1):95~120
  • 7[9]Petros M, James F K, Thomas F Q. Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing, 1993, 41(10): 3024~3051
  • 8[12]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 1998, 454:903~995ITS APPLICATION IN MECHANICAL FAULT DIAGNOSIS
  • 9刘红星,陈涛,屈梁生,李振武,于立柱.能量算子解调方法及其在机械信号解调中的应用[J].机械工程学报,1998,34(5):85-90. 被引量:15
  • 10唐德尧.共振解调技术在机械故障诊断中的应用和发展(一)[J].设备管理与维修,1991(11):22-24. 被引量:23

共引文献84

同被引文献1152

引证文献134

二级引证文献1238

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部