期刊文献+

平方根求积分卡尔曼滤波器 被引量:20

Square-Root Quadrature Kalman Filter
下载PDF
导出
摘要 针对具有加性噪声的非线性高斯动态系统的状态估计问题,本文提出一种近似递归的高斯滤波器:平方根求积分卡尔曼滤波器(SRQKF).该滤波器是在求积分卡尔曼滤波器(QKF)基础上的平方根实现形式,使用统计线性回归的方法,通过一套参数化高斯密度的高斯-厄米特积分点来线性化非线性函数的;滤波器采用平方根的实现方法,不仅增强了数值的鲁棒性,确保了状态协方差矩阵的半正定性,而且在一定程度上提高了滤波精度.仿真实验表明,SRQKF的滤波精度比QKF提高约12%,且均高于无味滤波器(UF)和扩展卡尔曼滤波器(EKF),但这二者的计算复杂度均比UF和EKF大.对滤波精度要求比较高的非线性场合,新滤波器是一种很有效的非线性滤波算法. Develope an approximate, recursive Gaussian filters for nonlinear dynamics with additive noise, square-root quadrature Kalman filter (SRQKF). This filter is the square-root implementation on the basis of the quadrature Kalman filter (QKF) ,it linearizes the nonlinear functions using statistical linear regression method through a set of Gaussian-Hermite quadrature points that parameterize the Gaussian density. The squre-root implementation of the new filter not only enhances the numerical stability, guarantees positive semi-definiteness of the state covariance, but also increases the filtering accuracy. The simulation shows that the tracking accuracy of the SRQKF is 12% higher than that of QKF,and the tracking accuracy of QKF is higher than that of the unscented Kalman filter (UF) and extended Kalman filter (EKF),but the computational cost of them are all higher than that of UF and EKF. The new filter is an effective nonlinear filtering algorithm in the place required high filtering accuracy.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第5期987-992,共6页 Acta Electronica Sinica
基金 国家973重点基础研究发展计划(No.2007CB311006) 国家自然科学基金(No.60574033)
关键词 高斯-厄米特积分点 统计线性回归 无味滤波器 求积分卡尔曼滤波器 Gauss-Hennite quadrature point statistical linear regression unscented filter quadrature Kalman filter
  • 相关文献

参考文献13

  • 1B D O Anderson,J B Moore.Optimal Filtering[M].Englewood Cliffs,NJ:Prentice-Hall,1979.
  • 2Y B Shalom,X-R Li,T Kirubarajan.Estimation with Applications to Tracking and Navigation[M].New York.Wiley and Sons,2001.
  • 3P Costa.Adaptive model architecture and extended KalmanBucy filters[J].IEEE Transactions on Aerospace and Electronic Systems.1994,30(2):525-533.
  • 4S J Juliet,J K Uhlmann,H F Durrant-Whyte.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
  • 5S J Juliet,J K Uhlmann,Unscented filtering and nonlinear estimarion[J].proceedings of the IEEE,2004,92(3):401-422.
  • 6马野,王孝通,戴耀.基于UKF的神经网络自适应全局信息融合方法[J].电子学报,2005,33(10):1914-1916. 被引量:16
  • 7Ito K,Xiong K.Gaussian filters for nonlinear filtering problems[J].IEEE Transactions on Automatic Control,2000,45(5):910-927.
  • 8Arasaratnam.I,Haykin.S,Elliott.R.J.Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature[J].Proceedings of the IEEE,2007,95(5):953-977.
  • 9Van der Merwe R,Wan E A.The square-root unscented kalman filter for state and parameter estimation[A].In Proc.IEEE International Conference on ICASSP[C].Calt Lake City,UT,USA,2001.3461-3464.
  • 10G H Golub,J H Welsch.Calculation of gauss quadrature rules[J].Math.Comput,1969,23(106):221-230.

二级参考文献8

  • 1Chowdhury F N.A Neural approach to Data Fusion[A].Proc.American control Conf[C].USA:Seattle,WA,1995.1693-1697.
  • 2Simon Haykin.Neural Networks:A Comprehensive Foundation[M].2nd Edition.USA:Prentice Hall PTR.1998.
  • 3S J Julier,J K Uhlmann.A new Extension of the Kalman filter to Nonlinear Systems[A].In Proceedings of the SPIE Aero sense International Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,Florida:April,1997.20-25.
  • 4E Awan,A T Nelson.Neural dual extended Kalman Filtering:applications in speech enhancement and monaural blind signal separation.In Proc of IEEE Workshop on Neural Networks for Signal Processing VII[C].Florida:September 1997.
  • 5S J Julier.The scaled unscented transformation[J].In Proceedings of American Control Conference,Anchorage,AK,USA,May 2002,6:4555-4559.
  • 6J K Uhlmann.Algorithms for multiple target tracking[J].American Scientist,1992,80(2):128-141.
  • 7Krakiwsky E J.Harris C B,Wang R V C.A Kalman Filter for Integrating Dead Reckoning,Map Match and GPS Position[A].Proceedings of IEEE Position,Location and Navigation Symposium[C].USA,Orlando:Institute of Navigation,1988.39-46.
  • 8陶俊勇,温熙森,陶利民.组合导航系统的神经元信息融合模型[J].国防科技大学学报,2002,24(3):81-85. 被引量:4

共引文献15

同被引文献175

引证文献20

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部