摘要
讨论了具有线性结构的弹性函数的两个指标:沃什谱和非线性度,得到了具有线性结构的布尔函数的一些性质。利用沃尔什变换和汉明重量的方法,发现了:如果V是n元布尔函数f(x)的线性结构,那么得到f(x)的沃尔什变换在Fn2\V⊥或V⊥为零这一事实,同时得到了一个布尔函数没有k(k≥0)维线性结构的充分条件。最后,利用以上结果推出了具有线性结构的弹性函数的非线性度的上界表达式。
The two criteria were discussed: the Walsh spectral and the nonlinearity of resilient functions with a linear structure,some properties of Boolean functions with linear structure were presented. By the methods of Walsh transform and Hamming weight,the fact that the Walsh transform of Boolean functions f(x) with n variables are zero with respect to F2^n/V^⊥ or V^⊥, if V is a linear structure of f(x), was found. A sufficient condition was derived to determine whether a Boolean function has no a linear structure with dimension k(k≥0) or not. Finally, a new upper bound on nonlinearity of a resilient function with linear structure was deduced by using these results.
出处
《计算机科学》
CSCD
北大核心
2009年第6期82-84,共3页
Computer Science
基金
国家自然科学基金(60473028
60773003和60503010)
陕西省自然科学基金(No.2006F19)
信息安全国家重点实验室(中国科学院研究生院)开放课题(No.03-06)资助
关键词
布尔函数
线性结构
弹性函数
非线性度
Boolean functions, Linear structure, Resilient functions, Nonlinearity