期刊文献+

联邦滤波器在船舶组合导航系统中的应用 被引量:1

The Application of Federated Filter on Marine Integrated Navigation System
下载PDF
导出
摘要 本文设计了一个基于融合-重置结构的联邦滤波器,应用于船舶组合导航系统。与传统的集中式滤波器相比,联邦滤波器结构简单,计算量少,容错性强。仿真结果表明,该联邦滤波器用在组合导航系统中是可行的,能够满足系统的精度要求。 This paper designs federated filter based on fusion-replacement structure, which is applied to an integrated navigation system of a ship. Compared with the traditional concentricity filter, the federated filter has such advantages as simple architecture, easy realization and litter computational complexity. The result of simulation indicates the filter is effective, which can meet the need of system precision.
出处 《微计算机信息》 2009年第16期214-215,232,共3页 Control & Automation
基金 基金申请人:张炎华 张卫明 项目名称:舰船导航系统滤波方法研究 基金颁发部门:中国船舶工业总公司"船舶工业国防科技应用 基础研究基金"(No.4.18)
关键词 组合导航系统 GPS 联邦滤波 卡尔曼滤波器 integrated navigation system GPS federated filter Kalman filter
  • 相关文献

参考文献4

  • 1Carlson N. A. Information-sharing approach to federated Kalman filtering [J]. Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, May 1988, 4 1581.
  • 2Carlson N. A. Federated filter for fault-tolerant integrated navigation systems [J].Position Location and Navigation Symposium., 29 Nov.-2 Dec. 1988. pp:110-119
  • 3张卫明,张炎华,钟山.蒙特卡罗粒子滤波算法应用研究[J].微计算机信息,2007(01S):295-297. 被引量:13
  • 4Gapolino G. A., Du, B. Extended Kalman filter observer for induction machine robot currents [J]. Proceedings of the European Power Electronics Conference, 1991, 3672-677.

二级参考文献11

  • 1Sorenson H W.Kalman Filtering:Theory and Applications[M].IEEE Press,New York,1985.23-25.
  • 2J.E.Handschin and D.Q.Mayne.Monte Carlo simulation techniques to estimation the conditional expectation in multi-stage non-linear filtering[J].Estimation.Int.J.Control,1969.9(5):547-559.
  • 3V.Kadirkamanathan,P.Li,M.H.Jaward,S.G.Fabri.A Sequential Monte Carlo Filtering Approach to Fault Detection and Isolation in Nonlinear Systems[A].Proceedings of the 39th IEEE Conference on Decision and Control 2000.Australia,December 2000.4341-4346.
  • 4A.Doucet,S.Godsill and C.Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10:197-208.
  • 5N.J.Gordon,D.J.Salmond,A.F.M.Smith.Novel approach to nonlinear non-Gaussian Bayesian state estimation[J].IEE Proc.Radar,Sonar and Navig,1993,140:107-113.
  • 6Arnaud.Doucet,Simon.Godsill,Christophe.Andrieu.On sequential Monte Carlo sampling methods for Bayesian filtering,Statistics and Computing[A].ISSN:0960-3174,July 2000,10(3):197-208.
  • 7Van der Merwe R.,Doucet A.,de Freitas N.and Wan E.The Unscented Particle Filter[R].Technical report CUED/F-INFENG/TR 380,Cambridge University Department of Engineering,May 2000.
  • 8Nando de Freitas.Rao-Blackwellised Particle Filtering for Fault Diagnosis[J].IEEE Aerospace,2002.
  • 9M.Sanjeev Arulampalam,Simon Maskell,Neil Gordon,and Tim Clapp.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing.February 2002,50(2):174-188.
  • 10Azimi-Sadjadi B.and Krishnaprasad P.S.Change.Detection for Nonlinear Systems:A Particle Filtering Approach[A].Proceedings of 2002 American Control Conference,2002.

共引文献12

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部