期刊文献+

一种改进的基于图论的图像分割方法 被引量:3

Improved Image Segmentation Method Based on Graph Theory
下载PDF
导出
摘要 提出了一种融合边缘检测与图论的图像分割方法,在基于图论方法进行图像分割之前,引入边缘检测对像素点进行预分类,以消除图论方法因为区域的过合并导致的欠分割现象。实验结果表明该文的算法能取得很好的分割效果。 A method for image segmentation is suggested by combining edge detection and graph theory. The method eliminates under-segmentation to some extent caused by over-clustering of graph methods, through introducing edge detection for initial classification of pixels before applying the graph method to cluster pixels. The experiment results show good results of segmentation.
出处 《科学技术与工程》 2009年第13期3652-3656,3671,共6页 Science Technology and Engineering
关键词 图像分割 图论算法 CANNY边缘检测 image segmentation graph algorithm canny edge detector
  • 引文网络
  • 相关文献

参考文献8

  • 1Zahn C T. Graph-theoretic methods for detecting and describing gestalt clusters. IEEE Transactions on Computing, 1971 ;20:68--86
  • 2Urquhart R. Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition, 1982 ; 15 ( 3 ) : 173--187
  • 3Shi J, Malik J. Normalized cuts and image segmentation. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 1997 : 731 --737
  • 4Pavan M, Pelillo M. A new graph-theoretic approach to clustering and segmentation. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2003 ; 1 : 145--152
  • 5Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004;59 (2) : 167--181
  • 6Cormcn T H, Leiserson C E,Rivest R L. Introduction to Algorithms, Second Edition. The MIT Press, McGraw-Hill Book Company, 2002
  • 7Canny J. A computational approach for edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986 ; 8 (6) : 679-698
  • 8http ://people. cs. uchicago. edu/-pff/segment/

同被引文献19

  • 1麻进仓.陕西苹果基地建设的对策研究[J].陕西农业科学,2001,47(2):1-3. 被引量:12
  • 2杨帆,廖庆敏.基于图论的图像分割算法的分析与研究[J].电视技术,2006,30(7):80-83. 被引量:16
  • 3Felzenszwalb P F, Huttenlocher D EEfficient graph-based image segmentation[J].Intemational Journal of Computer Vision, 2004, 59(2) : 167-181.
  • 4Gonzalez R C,Woods R E.Digital image processing[M].2nd ed.北京:电子工业出版社,2003:261-264.
  • 5Pedro F. Felzenszwalb,Daniel P. Huttenlocher.Efficient Graph-Based Image Segmentation[J].International Journal of Computer Vision.2004(2)
  • 6Smith A R,Blinn J F.Blue screen matting[].Proceedings of therd ACM Conference onComputer Graphics andInteractive Techniques (SIGGRAPH).1996
  • 7Haralick R M,Shanmugam K,Dinstein I.Texture features for image classification[].IEEE Transactions on Systems Man and Cybernetics.1973
  • 8ZAHN CT.GRAPH-THEORETICAL METHODS FOR DETECTING AND DESCRIBING GESTALT CLUSTERS[].IEEE Transactions on Computers.1971
  • 9Wang, Song,Siskind, Jeffrey Mark.Image segmentation with ratio cut[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003
  • 10牛希泉,梁艳梅.自然场景下成熟苹果彩色图像分割方法的研究[J].光电子.激光,2007,18(12):1453-1456. 被引量:13

引证文献3

二级引证文献17

;
使用帮助 返回顶部