摘要
提出一种改进的神经网络属性选择方法。该方法用敏感度分析法对初始属性集中的属性进行排序,剔除次要属性实现降维,用BP神经网络进行属性选择以找到最小属性集。仿真结果表明该方法效果良好。
This paper presented an improved neural network fealures selection method. It ranked the initial features set by using the method of sensitivity analysis, and then removed the secondary features to achieve dimension reduction. Selected the minimum set of features by the BP neural network at last. The simulation results show the efficiency of this approach.
出处
《计算机应用研究》
CSCD
北大核心
2009年第7期2659-2660,2663,共3页
Application Research of Computers