期刊文献+

一种改进的BP神经网络属性选择方法 被引量:3

Improved BP neural network feature selection method
下载PDF
导出
摘要 提出一种改进的神经网络属性选择方法。该方法用敏感度分析法对初始属性集中的属性进行排序,剔除次要属性实现降维,用BP神经网络进行属性选择以找到最小属性集。仿真结果表明该方法效果良好。 This paper presented an improved neural network fealures selection method. It ranked the initial features set by using the method of sensitivity analysis, and then removed the secondary features to achieve dimension reduction. Selected the minimum set of features by the BP neural network at last. The simulation results show the efficiency of this approach.
出处 《计算机应用研究》 CSCD 北大核心 2009年第7期2659-2660,2663,共3页 Application Research of Computers
关键词 属性选择 BP神经网络 属性排序 敏感度分析 改进的BP神经网络属性选择方法 feature selection BP neural network feature ranking sensitivity analysis(SA) IBNM
  • 相关文献

参考文献9

  • 1Han Jiawei,Kamber M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2006
  • 2王继成,黄源,武港山,张福炎.一种两阶段的神经网络属性选择方法[J].广西师范大学学报(自然科学版),2003,21(A01):41-45. 被引量:2
  • 3王琪.软件质量预测模型中的若干关键问题研究[D].上海:上海交通大学.2006.
  • 4FU Xiu-ju, WANG Li-po. Rule extraction based on data dimensionality reduction using RBF neural networks [ C ]//Proc of the 8th International Conference on Neural Information Processing. 2001:149-153.
  • 5KEAK N, CHOI C H. Input feature selection for classification prohlem [J].IEEE Tran on Neural Networks,2002,13(1) :143-159.
  • 6ENGELBRECHT A P. A new pruning heuristic based on variance analysis of sensitivity information[ J]. IEEE Trans on Neural Networks,2001,12(6) :13g6-1399.
  • 7CONDRA I. Applying machine learning to software fault-proneness prediction[ J ]. The Journal of System and Software, 2008,81 (2) :186-195.
  • 8蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版),2008,44(1):9-16. 被引量:215
  • 9ASUNCION A, NEWMAN D J. UCI machine learning repository[ EB/ OL]. (2007). http://www. ics. uci. edu/- mleam/MLRepository. html.

二级参考文献35

  • 1陈太聪,韩大建,苏成.参数灵敏度分析的神经网络方法及其工程应用[J].计算力学学报,2004,21(6):752-756. 被引量:26
  • 2万文,曹平,吴永恒.弹塑性极限平衡法分析复杂岩质边坡的稳定性[J].中国安全科学学报,2004,14(6):100-104. 被引量:72
  • 3杨秀芝,贾春梅.投资项目因素敏感性分析[J].边疆经济与文化,2005(12):35-37. 被引量:4
  • 4McKay M D, Beckman R J, Conover W J. A comparison of three methods fro selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21:239
  • 5Cukier R I, Fortuin C M, Shuler K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficientsI[J]. Theory J Chem Phys, 1973, 59: 3873
  • 6Cukier R I, Levine H B, Shuler K E. Nonlinear sensitivity analysis of multiparameter model systems[J]. J Comput Phys, 1978, 26:1
  • 7Cukier R I, Schaibly J H, Shuler K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients Ⅲ: analysis of the approximations[J].J Chem Phys, 1975, 63:1140
  • 8Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques[J].Reliability Engineering and System Safety, 1990, 28:229
  • 9Morris M D. Factorial sampling plans for preliminary computational experiments [J]. Technometrics, 1991, 33:161
  • 10Sobol I M. Sensitivity estimates for nonlinear mathematical models [ J ]. Math Modeling & Computational Experiment, 1993(1):407

共引文献226

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部