期刊文献+

广义的监督局部保留投影算法 被引量:7

Generalized Supervised Locality Preserving Projection
下载PDF
导出
摘要 针对监督的局部保留投影算法(Supervised Locality Preserving Projection,SLPP)在小样本情况下矩阵的奇异性问题,该文提出了一种广义的监督局部保留投影算法(Generalized Supervised Locality Preserving Projection,GSLPP)。GSLPP在大样本情况下等价于SLPP,在小样本情况下却可以等价转换到一个低维空间中来求解,从而有效解决了小样本问题。最后,实验结果验证了该方法的有效性。 Supervised Locality Preserving Projection (SLPP) is a generalization of Locality Preserving Projection (LPP) in the case of supervised learning. In this paper the drawback of SLPP in the high-dimensional and small sample size case is pointed out, and a new algorithm called Generalized Supervised Locality Preserving Projection (GSLPP) is proposed. The relationship between SLPP and GSLPP is theoretically analyzed. In the small sample size case GSLPP can be solved equivalently in lower-dimensionality space. Finally, the effectiveness of the proposed algorithm is verified by experimental results.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第8期1840-1845,共6页 Journal of Electronics & Information Technology
基金 国家863计划项目(2007AA1Z158 2006AA10Z313) 国家自然科学基金(60704047)资助课题
关键词 特征提取 局部保留投影 监督局部保留投影 Feature extraction Locality Preserving Projection (LPP) Supervised Locality Preserving Projection (SLPP)
  • 相关文献

参考文献12

  • 1宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 2He X and Niyogi P.Locality preserving projections[C].Proc.Conf.Advances in Neural Information Processing Systems,Vancouver,Canada,2003:585-591.
  • 3Kokiopoulou E and Saad Y.Orthogonal neighborhood preserving projections:A projection-based dimensionality reduction technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
  • 4申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239. 被引量:30
  • 5Tao Q,Wu G W,and Wang J.The theoretical analysis of FDA and applications[J].Pattern Recognition,2006,39(6):1199-1204.
  • 6杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 7Liu J,Chen S C,and Tan X Y.A study on three linear discriminant analysis based methods in small sample size problem.Pattern Recognition,2008,41(1):102-116.
  • 8Zhuang X S and Dai D Q.Improved discriminate analysis for high-dimensional data and its application to face recognition[J].Pattern Recognition,2007,40(5):1570-1578.
  • 9Cai D,He X,and Han J,et al..Orthogonal laplacianfaces for face recognition[J].IEEE Transactions on Image Processing,2006,15(11):3608-3614.
  • 10Turk M and Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.

二级参考文献69

  • 1宣国荣,柴佩琪.基于Chernoff上界的特征选择[J].模式识别与人工智能,1996,9(1):26-30. 被引量:2
  • 2刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 3宣国荣,柴佩琪.基于巴氏距离的特征选择[J].模式识别与人工智能,1996,9(4):324-329. 被引量:16
  • 4[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 5[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 6[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 7[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 8[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 9[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 10[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839

共引文献168

同被引文献82

  • 1庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 2Xiaofei He,Parth Niyogi.Locality Preserving Projection[C].Advances in Neural Information Processing Systems Cambriage:MIT press,2004:327-334.
  • 3Jian Yang,David Zhang,Jing-yu Yang.Globally Maximizing,Locally Minimizing:Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics[J].IEEE Transactions on Pattern Analusis and Machineintelligence,2007,29(4).
  • 4Li-Fen Chen,H.-Y.Mark Liao,M.-T.Ko,et al.A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):317-324.
  • 5Loog M and Duin R P W.Linear dimensionality reduction via a heteroscedastic extension of LDA:the Chernoff criterion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(6):732-739.
  • 6Dss K and Nenadic Z.Approximate information discriminant analysis:a computationallv simple heteroscedastic feature extraction technique[J].Pattern Recognition,2008,41(5):1548-1557.
  • 7He Xiao-fei.Locality preserving projections[D].[Ph.D.dissertation],The University of Chicago,2005.
  • 8Feng Gui-yu,Hu De-wen,Zhang D,and Zhou Zong-tan.An alternative formulation of kernel LPP with application to image recognition[J].Neurocomputing,2006,69(13-15):1733-1738.
  • 9Yang Jian,Jin Zhong,and Yang Jing-yu,et al..Essence of kernel Fisher discrimiaant:KPCA plus LDA[J].Pattern Recognition,2004,37(10):2097-2100.
  • 10Yoshikazu Washizawa.Subset kernel principal component analysis[C].IEEE International Workshop on Machine Learning for Signal Processing,Grenoble,France,September 2-4,2009:1-6.

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部