期刊文献+

体上分块矩阵群逆研究

Research on group inverses of block matrices over skew fields
下载PDF
导出
摘要 形为M=A BC0矩阵群逆的研究来自一系列从带约束的最优化问题到微分方程的解等众多应用领域的问题.利用分块矩阵运算及矩阵变换的方法,在一定条件下研究了体上M形块阵的群逆问题.给出了2种M形矩阵群逆的存在性定理及相应表示形式,为M形块阵群逆的研究提供了新的思路. Research on block matrices, whose forms are M =[A B C O], is driven by numerous applied problems ranging from constrained optimization problems to solutions for differential equations. In this paper, block matrix calculation and transforms were used to study the group inverse problems of M type matrices over division rings. The existence theorem and representations of the group inverse for two kinds of M matrices are given, which supplies a new method for examining group inverse problems with M type matrices.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第8期967-969,共3页 Journal of Harbin Engineering University
关键词 群逆 矩阵的秩 分块矩阵 skew fields group inverse matrix rank block matrices
  • 相关文献

参考文献7

二级参考文献26

  • 1王卿文.任意体上的双矩阵分解与矩阵方程[J].数学学报(中文版),1996,39(3):396-403. 被引量:17
  • 2卜长江.关于体上分块矩阵的群逆[J].数学杂志,2006,26(1):49-52. 被引量:4
  • 3卜长江,王贵艳,井世丽.主理想整环上保对称矩阵群逆的线性算子[J].哈尔滨工程大学学报,2007,28(8):942-946. 被引量:1
  • 4庄瓦金.任意体上矩阵对和函数与广义逆[J].东北数学,1987,(1):57-65.
  • 5Meyer C.D.,Rose N.J..The index and Drazin inverse of blok triangular matrices [J].SIAM J.Appl.Math.,1977,33:1-7.
  • 6Campbell S L, Meyer Jr. C D. Generalized inverses of Linear transformations. Pitman, London, 1979
  • 7CAMPBELL S L. The Drazin inverse and systems of second order linear differential equations [J]. Linear and Multilinear Algebra, 1983, 14: 195-198.
  • 8GONZALES N C, DOPAZO E. Representations of the Drazin inverse of a class block matrices [J]. Linear Algebra and its Applications, 2005, 400: 253-269.
  • 9CAO C G. TANG X M. Representations of the group inverse of some 2 × 2 block matrices [J]. International Mathematical Forum, 2006, 31: 1511-1517.
  • 10MIAO J M. General expressions for the Moore-Penrose inverse of a 2 × 2 block matrix [J]. Linear Algebra and its Applications, 1991, 151: 1-15.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部