期刊文献+

基于模式搜索的类电磁算法求解约束优化问题 被引量:3

Electromagnetism-like method based on pattern search for constrained optimization problem
下载PDF
导出
摘要 针对约束优化问题,提出了一种基于模式搜索的类电磁算法。引入了粒子的违反度函数,将约束优化问题转化为双目标无约束优化模型来求解;提出了双目标模型中粒子的电荷和受力的计算公式,引导不可行粒子转化为满足约束条件的粒子;为了提高算法的搜索能力,结合模式搜索算法改进种群中的粒子,为类电磁算法提供了有效的局部信息。与以往算法仿真结果相比,新算法具有性能好、较稳定的优点。 An electromagnetism-like method (EM) is proposed for solving constrained optimizations on the basis of pattern search (PS). The violation degree function is introduced, and the new technique for constraints handling is adopted to transform the constrained optimization problem into a bi-objective unconstrained optimization model. The computational equations of the charge and force exerted on the particles are presented for the hiobjective model, which will lead the infeasible particles to transform into feasible ones. In order to enhance the exploratory ability, the pattern search is incorporated to improve the particle which provides effective local information for the EM. Compared with the simulation results of the existing algorithms, the proposed algorithm has the advantages of good performance and favorable stability.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第9期2219-2222,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60374063)资助课题
关键词 类电磁算法 约束优化 模式搜索 双目标 electromagnetism-like method constrained optimization pattern search bi-objective
  • 引文网络
  • 相关文献

参考文献8

  • 1Angel Fernando Kuri-Morales, Je s us Gutierrez-Garcia. Penalty function methods for constrained optimization with genetic algorithms : a statistical analysis[C]//Proc, of the 2nd Mexican International Conference on Artificial Intelligence : Advances in Artificial Intelligence, 2002,2313 : 187 - 200.
  • 2Coelol-coelol C. Theoretical and numerical constraint handling techniques used with evolutionary algorithms., a survey of the state of the art[J]. Computer Methods in Applied Mechanic and Engineering, 2002, 191(11):1245- 1287.
  • 3Birbil I S, Fang Shucherng. An electromagnetism-like mechanism for global optimization[J]. Journal of Global Optimization, 2003, 25(3): 263-282.
  • 4Rocha A M A C, Fernandes E M G P. A modified electromagnetism-like algorithm based on exploratory moves[C]///Proc, of the 2nd Conference on Optimization Methods & Software, 2007,4 - 7.
  • 5Lewis R M, Torczon V. Pattern search algorithm for bound constrained minimization[J]. SIAM Journal Optimization, 1999, 9(4) :1082 - 1099.
  • 6Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Trans. on Evolutionary Computation, 2000, 4(3) :284 - 294.
  • 7Deb K. An effective constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engieering, 2000, 42(8) :1333 - 1338.
  • 8寇晓丽,刘三阳.一种随机微粒群混合算法求解约束优化问题[J].系统仿真学报,2007,19(10):2148-2150. 被引量:5

二级参考文献12

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 3Kennedy I,Eberhart R.Particle swarm optimization[C]// Proc.IEEE Int.Conf.On Neural Networks.Perth,WA,Australia.1995.
  • 4Van den Bergh F.Particle swarm Weight Initialization in Multi-layer Perception artificial neural networks[C]// Development and Practice Artificial Intelligence Techniques,Durban,South,Africa:IAAMSAD.1999.
  • 5Ray T,Liew K M.A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems[C]// Proc.IEEE Int.Conf.On Evolutionary Computation.Piscataway,NJ,USA:IEEE.2001.
  • 6Hon T Richardson,Mark R Palmer.Some Guidelines for Genetic Algorithms with Penalty Functions[C]// Proceeding of the third international conference.Genetic Algorithms (ICGA-89),U.S George Mason University,Morgan Kaufmann Publishers.1989.
  • 7Douglas A G Vieira,Ricardo L S Adriano.Handling constraints as objectives in a multi-objective genetic based algorithm[J].Journal of Microwaves and Optoelectronics (S1516-7399),2002,2(6):50-58.
  • 8Deb K.An efficient constraint handing method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering (S0045-7825),2000,186(2):311-338.
  • 9Pandya A S.A stochastic parallel optimization algorithm[D].N.Y,Syracuse University,1988.
  • 10Runarsson T P Yao X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolutionary Computation (S1089-778X),2000,4(3):284-294.

共引文献4

同被引文献15

引证文献3

二级引证文献5

;
使用帮助 返回顶部