摘要
建立了低浓度三分子模型双曲型反应-扩散的波动方程,研究了定态的稳定性,重点研究了Turing不稳定问题,指出双曲型方程的Turing不稳定不受扩散系数不相等(Dx≠Dy)这一条件的约束,进而对方程作近似的分支分析,讨论了出现极限环的条件,最后对极限环和定态不稳定作了数值研究.
The wave equations of the hyperbolic reaction-diffusion equations for the lowconcentration Brusselator are developed, and the stability of steady state, especially turing instability, is studied,the results show that the Turing instability in hyperbolic equations is not confined by the condition that coefficients are not equal(Dx≠Dy). Bifurcation analyses are carried out and the limit cycle is discussed.The numerical studies are also made.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
1998年第10期913-918,共6页
Acta Physico-Chimica Sinica
关键词
三分子模型
双曲型反应
化学振荡
波动
扩散方程
Brussellator, Hyperbolic (Parabolic) reaction-diffusion equation, Turing instability,Bifurcation analysis