期刊文献+

基于策略熵的博弈分析研究 被引量:2

Game Analyzing Based on Strategic Entropy
原文传递
导出
摘要 通过建立博弈问题的信息论模型和定义不同类型博弈问题的策略熵,论证了纳什均衡与最大熵之间的内在联系:最大策略熵是纳什均衡的充分必要条件。这表明纳什均衡不仅是利益的均衡同时也是信息均衡的结果。在此基础上,给出了基于熵最大化准则的纳什均衡估计与精炼的方法。 Based on communication model in information theory, a game theoretical model is developed. And different definitions of strategic entropy for different kind of games are presented respectively. Then we prove that a mixed strategy with maximum entropy is sufficient and necessary condition for Nash equilibrium, which demonstrates that Nash equilibrium is the equilibrium not only of benefits but also of information. Based on the basic theorem we presented, the method of achieving and refining Nash equilibrium is presented by the end.
作者 何大义
出处 《中国管理科学》 CSSCI 北大核心 2009年第5期133-139,共7页 Chinese Journal of Management Science
关键词 信息论 博弈论 策略熵 最大熵准则 information theory game theory strategic entropy maximum entropy principle
  • 相关文献

参考文献15

  • 1拉丰编,王国成,黄涛,等译.经济理论的进展(上)-国际经济计量学会第六届世界大会专集[C],北京:中国社会科学出版社,2001.
  • 2拉丰编,王国成,黄涛,等译.经济理论的进展(下)-国际经济计量学会第六届世界大会专集[C],北京:中国社会科学出版社,2001.
  • 3Neyman, A. , Okada, D.. Strategic entropy and complexity in repeated games [J]. Games and Economic Behavior, 1999,29:191-223.
  • 4Neyman, A. ,Okada,D.. Repeated games with bounded entropy [J]. Games and Economic Behavior, 2000,30:228-247.
  • 5Golan, A. , Katp,L. S. ,Perloff,J. M.. Estimation a mixed strategy employing maximum entropy[Z]. Working paper, University of California Berkeley, 1999.
  • 6Berg,J. , Engel, A.. Matrix games, mixed strategies, and statistical mechanics [J]. physical Review Letters, 1998,81(11) :4999-5002.
  • 7Berg,J. , Weigt,M.. Entropy and typical properties of Nash equilibria in two-player games[J]. Euro Physics Letter, 1999,48(2) :129-235.
  • 8Topsφe,F.. Entropy and equilibrium via games of complexity[J]. Physica A: Statistical Mechanics and its Applications, 2004,340(1-3):11-31.
  • 9姜殿玉,张盛开,丁德文.极大熵准则下n人非合作条件博弈的期望Nash均衡[J].系统工程,2005,23(11):108-111. 被引量:6
  • 10姜殿玉,王春光,刁成海.几个双矩阵经济管理理性博弈的期望均衡分析[J].系统工程,2008,26(1):106-109. 被引量:4

二级参考文献24

  • 1姜殿玉,张盛开,丁德文.矩阵对策的Neumann-Shannon对策解[J].系统工程,2005,23(7):17-21. 被引量:3
  • 2张瑞清,邱菀华.决策分析中一类极大熵问题的求解算法与应用[J].系统工程理论与实践,1996,16(11):39-43. 被引量:7
  • 3阎植林.管理决策中的熵理论及应用研究[M].北京:北京航空航天大学,1996..
  • 4宋俊杰.统计信息分析(上)[M].天津:天津南开大学出版社,1988..
  • 5[1]Kapur J N, Kesavan H K. Entropy Optimization Principles with Applications [M]. London: Academic Press, Inc., 1992.98-101.
  • 6[5]Neyman A,Okada D. Strategic Entropy and Complexity in Repeated Games [J]. Games and Economic Behavior, 1999, (29): 191-223.
  • 7[6]Neyman A, Okada D. Repeated Games with Bounded Entropy [J].Games and Economic Behavior, 2000, (30) :228-247.
  • 8谢识予.经济博弈论[M].上海:复旦大学出版社,2001..
  • 9Jaynes E T.Information theory and statistical mechanics[J].Physical Review,1957,106(4):620~630.
  • 10Jaynes E T.Prior probabilities[J].IEEE Transactions on systems,Science,and Cybernetics,1968,SSC-4,227.

共引文献34

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部