摘要
在А.И.Гусейнов等工作的基础上提出并讨论带有不同密度的非线性奇异积分方程组的可解性.通过构造与之可解性相同的每个方程只含一个密度的方程组,证明了对给定的广义Holder空间HK1,K2(ω1,ω2,ω),存在常数λ0,当|λ|≤λ0时方程组可解.
Based on literature, the solvability of nonlinear singular integrable equations with different density is studied. Another system which just includes a density and has the same solvability with the original system is constructed. The above systems are proved solvable in a given general Hlder space H K 1,K 2 (ω 1, ω 2, ω) if |λ|≤λ 0 , where λ 0 is a suitable constant.
出处
《华中理工大学学报》
EI
CAS
CSCD
北大核心
1998年第9期106-109,共4页
Journal of Huazhong University of Science and Technology
基金
河南省基础研究项目资助课题
关键词
非线性
奇异积分方程组
密度
可解性
nonlinear
singular integral equations
density
solvability