期刊文献+

基于双联邦UKF算法的组合导航数据融合方法 被引量:2

Integrated Navigation Data Fusion Method Based on Double Federated UKF Algorithm
下载PDF
导出
摘要 为了提高组合导航系统数据融合的精度和容错性,提出一种双联邦UKF组合导航数据融合方法。采用双联邦UKF滤波器的算法将JTIDS相对导航技术与成熟的GPS/INS/DVS组合导航技术相结合组成新的双联邦UKF组合导航数据融合算法。联邦UKF算法将UKF算法和分散式滤波技术相结合,精度高容错性好,JTIDS相对导航技术精度高抗干扰能力强。主滤波器1对GPS/INS/DVS组合导航信息进行融合后与JTIDS相对导航信息在主滤波器2中融合,提高了组合导航系统的可靠性和容错性。数值仿真实验表明,该算法性能优于单纯采用联邦GPS/INS组合导航算法是一种理想的组合导航滤波方法。 In order to improve stability .and fault tolerance of integrated navigation data fusion, a new double federated UKF algorithm was designed. The new algorithm which used in the new integrated navigation data fusion method combines the JTIDS relative navigation with GPS/INS/DVS integrated navigation. The double federated UKF algorithm based on unscented Kalman filter algorithm and distributed information fusion technology is featured with high stability and fault tolerance. JTIDS relative navigation has high accuracy and its anti-jamming ability is strong. Master filter 1 was used to deal with the data of GPS/INS/DVS integrated navigation; master filter 2 was used to deal with the result of master filter 1 and the JTIDS relative navigation data. The reliability and the fault tolerance were improved by the double federated UKF filter. The simulation shows that this filter method has higher filter precision and better stability than the GPS/INS federated UKF; it is an ideal nonlinear filter method of integrated navigation.
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第5期106-110,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 GPS/INS/DVS/JTIDS组合导航 非线性滤波 联邦滤波 UKF 数据融合 GPS/INS/ DVS / JTIDS integrated navigation nonlinear filtering federated filtering UKF data fusion
  • 引文网络
  • 相关文献

参考文献5

二级参考文献16

  • 1曹建平,周新力,周恒军,王红星.联合战术信息分发系统的特点及其应用[J].海军航空工程学院学报,2001,16(1):183-185. 被引量:1
  • 2孙贺,丁子明.GPS/JTIDS/INS组合导航研究[J].导航,1990(4):1-10. 被引量:3
  • 3[1]Carlson N A,Berarducci Michael P.Federated Kalman filter simulation results[J].Navigation,1994,41 (3):297-321.
  • 4[2]Foxlin E M.Generalized architecture for simultaneous localization,auto-calibration,and map-building[A].The IEEE/RSJ 2002 International Conference on Intelligent Robots and System[C].2002,Vol.1:527-533.
  • 5[3]Carlson N A.Federated square root filter for decentralized parallel processes[J].IEEE Transactions on AES,1990,AES-26(3):517-527.
  • 6[6]Broatch S A,Henley A J.An integrated navigation system manager using federated Kalman filtering[A].Proceedings,NAECON 1991[C].1991,Vol.1:422-426.
  • 7[7]Felter S.C.An overview of decentralized Kalman filter techniques[A].Proceedings of the 1990 IEEE Southern Tier Technical Conference[C].1990:79-87.
  • 8[2]Fried W R, Loeliger R. Principles, System Configuration and Algorithm Design of Inertially Aided JTIDS Relative Navigation Function[J]. Journal of The Institute of Navigation, 1979,26(3):224-236
  • 9Yan Weizhong. Fault Detection and Muhi-Classifier Fusion for Unmanned Aerial Vehicles. Sensor Fusion, Proceedings of SPIE, 2001,1358:176-186
  • 10Simon Julier,Jeffrey K.Uhlmann,and Hugh F.DurrantWhyte.A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators[J].IEEE Transaction on Automatic Control.2000,45 (3):477 ~ 482.

共引文献36

同被引文献20

  • 1Rigatos G G. Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles[J]. Robotics and Autonomous Systems, 2012,60(7) :978-995.
  • 2Kotecha J H,Djuric P M. Gaussian particle filtering [J]. IEEE Transactions on Signal Processing,2003, 51(10) :2592-2601.
  • 3Olivier Brun, Vincent Teuliere, Jean-Marie Garcia. Parallel particle filtering [J]. J Parallel Distribted Computing, 2002,62 (7) : 1186-1202.
  • 4Chen Xiyuan, Shen Chong,Zhao Yuefang, et al. Stud- y on GPS/INS system using novel filtering methods for vessel attitude determination[J]. Mathematical Problems in Engineering,2013(2013): 1-8.
  • 5Wang Rong, Liu Jianye, Xiong Zhi, et al. Double- layer fusion algorithm for EGI-based system[J]. Aircraft Engineering and Aerospace Technology, 2013,85 (4): 258-266.
  • 6Xiong Zhi, Chen Jihui, Wang Rong, et al. A new dynamic vector formed information sharing algorithm in federated filter[J]. Aerospace Science and Tech- nology, 2013,29(1) :37-46.
  • 7Katalin Gyorgy,Andrds Kelemen, Lciszlo Dovid. Un- scented Kalman filters and particle filter methods for nonlinear state estimation[J]. Procedia Technology, 2014,12(1) : 65-74.
  • 8Myers M R,Jorge A B,Mutton M J,et al. A compar- ison of extended Kalman filter, particle filter, and least squares localization methods for a high heat flux concentrated source [J]. International Journal of Heat and Mass Transfer, 2012,55 (9) : 2219-2228.
  • 9Leela K B,Raju K P. Performance analysis of particle filter for launch vehicle trajectory[J]. IETE Journal of Education,2013,54(2) :83-91.
  • 10郭晓松,李奕芃,郭君斌.粒子滤波算法及其应用研究[J].计算机工程与设计,2009,30(9):2264-2266. 被引量:19

引证文献2

二级引证文献9

;
使用帮助 返回顶部