摘要
设0<β<1,α,β0<α<n-,βq>nn-α.给出了当p=nn+β时,分数次积分I与L ipsch itz函数b的交换子从局部H ardy空间hp(Rn)到空间hp(Rn)+Lq(Rn)上的有界性估计.
0〈β〈1,α≥β,0〈α〈n-β,q〉n/n-α If p=n/n+β, weshowthat the commutator associated with the fractional integral I. and b ∈ Lipβ(R^n) is bounded from local Hardy space h^P(R^n) to h^P(R^n) + L^q(R^n).
出处
《数学的实践与认识》
CSCD
北大核心
2009年第21期192-196,共5页
Mathematics in Practice and Theory