摘要
文章首先将二次Bernstein基函数进行扩展,定义了带2个形状参数的四次多项式基函数,它以二次Bernstein基和三次-λB基为特例;再利用de Casteljau算法进行递推,得到了一般n次Bernstein基函数的扩展,它由n+1个带形状参数的n+2次多项式组成;基于这组基函数定义了带2个形状参数的多项式曲线,它以一般n次Bézier曲线和n+1次-λBézier曲线为特例;分析了这组基以及由其定义的曲线的性质,给出了形状参数的几何意义和曲线的几何作图法。
A class of polynomial functions of 4th-degree with two parameters is presented,which is the extension of quadratic Bernstein and cubic λ-B basis functions. Then using the de Casteljau arithmetic,the generalized basis function of degree n+2 with two shape parameters is obtained. Based on this, a new type of curve with two shape parameters is defined. The new curve contains generalized Bezier curves and λ-Beizier curves. The properties of the new basis and the new curve are analyzed: Meanwhile, the geometry meaning of the shape parameters and the geometric drawing method of the new curve are given.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第11期1783-1788,共6页
Journal of Hefei University of Technology:Natural Science
基金
东华理工大学校长基金资助项目(DHXK0808)
东华理工大学校长基金资助项目(DHXK0828)