期刊文献+

等离子体修饰磁载TiO_2光催化剂性能研究 被引量:4

Magnetically Separable TiO_2 Photocatalysts Modified by Plasma and Its Characterization
下载PDF
导出
摘要 以化学共沉法制备的CoFe2O4纳米粒子为磁核,采用TiCl4水解包覆技术制备磁载二氧化钛纳米复合粒子CoFe2O4/TiOx(TCF),利用低温等离子体技术修饰TCF制备了CoFe2O4/TiO2(PTCF)纳米复合光催化剂。运用VSM(振动样品磁强计)技术对样品磁性能进行研究,结果表明:等离子体修饰后的复合材料仍具有较高的饱和磁化强度,可在外加磁场作用下实现催化剂在水中的分离与回收;样品的XRD、TEM和UV-Vis分析测试结果表明:等离子体修饰后的复合材料有锐钛矿型TiO2存在;TEM谱图显示磁核CoFe2O4的平均粒径约为20 nm,TCF复合粒子的粒径约为30~40 nm,TiO2包覆层的厚度为10~20 nm。与纯TiO2相比PTCF样品对光的吸收拓展到整个紫外-可见区,扩大了光谱响应范围;对甲基橙溶液降解的光催化活性评价研究表明:TCF复合粒子等离子体修饰后的PTCF纳米复合光催剂的光催化活性明显提高。 A core-shell CoFe2O4/TiO2 magnetic nano-photocatalyst was prepared by hydrolysis of titanium tetrachloride in the presence of the CoFe2O4 magnetic particles and modified by cold plasma. The magnetic property of the samples was characterized by Vibrating Sample Magnetometer (VSM) analysis. The CoFe2O4/TiO2 magnetic nano- photocatalysts has fairly good magnetic property. The X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) technique were used to analyze the phase structure, size and spectrum response scope of the samples. The XRD indicated the anatase TiO2 was formed when TCF modified by plasma. The size of CoFe2O4particles was about 20 nm. The diameter of CoFe2O4/TiO2 particles is in the range of 30-40 nm. So the shell of TiO2 enwraps closely around the core and the thickness is in the range of 10-20 nm. The UV-Vis spectrum revealed a red shift of the absorption edge to the visible-light region than that pure TiO2. Methyl orange was used to investigate the photo-degradation activity of the nano-photocatalysts. The results showed that the photocatalytic activity of TCF modified by plasma is better than that without plasma.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2009年第11期1912-1916,共5页 Chinese Journal of Inorganic Chemistry
基金 印刷包装材料与技术北京市重点实验室(北京印刷学院)开放研究课题基金(No.BIGC-KF200802) 辽宁省教育厅科技计划项目(No.2006006)资助
关键词 等离子体 磁载TiO2 光催化剂 plasma magnetically separable TiO2 photocatalyst
  • 相关文献

参考文献12

  • 1Rana S, Srivastava R S, Sorensson M M, et al. Mater. Sci. Eng. B, 2005,119:144-151.
  • 2XUE Shi-Hong(许士洪), FENG Dao-Lun(冯道伦), LI Deng-Xin(李登新), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24(5):785-790.
  • 3LIU Zi-Quan(刘子全), GAO Yuan(高原), ZHANG Shang- Zhou(张尚洲), et al. lnorg. Chem. Indus.(Wujiyan Gongye), 2008,40(5):9-12.
  • 4Fu W Y, Yang H B , Li M H, et al. Mater. Lett., 2005,59: 3530-3534.
  • 5LI Xiao-Jing(李晓菁), QIAO Guan-Jun(乔冠军), CHEN Jie-Rong(陈杰荣). Prog. Chem.(Huaxue Jinzhan), 2007,19(2/3): 220-224.
  • 6Anpo M, Takeuchi M. J. Catal., 2003,216:505-516.
  • 7CHEN Lin(陈琳), LEI Le-Cheng(雷乐成). Tech. Water Treat.(Shuichuli Jishu), 2007,33(9):1-5.
  • 8GAO Shuai(高帅), LI Zhong-Yi(李忠义), ZHANG Xiu- Ling(张秀玲). J. Funct. Mater. Devices(Gongneng Cailiao Yu Qijian Xuebao), 2009,15(2):201-205.
  • 9Chen C C, Bai H L, Chang S M, et al. J. Nanopart. Res., 2007,9:365-375.
  • 10LI Xiao-Jing(李晓菁), QIAO Guan-Jun(乔冠军), CHEN Jie-Rong(陈杰荣). J. Chinese Ceramic Soc. (Guisuanyan Xuebao), 2006,34(12):1466-1469.

同被引文献69

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部