期刊文献+

压缩传感综述 被引量:205

A Survey on Compressive Sensing
下载PDF
导出
摘要 在传统采样过程中,为了避免信号失真,采样频率不得低于信号最高频率的2倍.然而对于数字图像、视频的获取,依照香农(Shannon)定理会导致海量采样数据,大大增加了存储和传输的代价.近年来,一种新兴的压缩传感理论为数据采集技术带来了革命性的突破,得到了研究人员的广泛关注.压缩传感采用非自适应线性投影来保持信号的原始结构,能通过数值最优化问题准确重构原始信号.压缩传感以远低于奈奎斯特频率进行采样,在压缩成像系统、模拟/信息转换、生物传感等领域有着广阔的应用前景.本文主要介绍了压缩传感的基本理论及相关应用,并对其研究前景进行了展望. In the traditional signal sampling process, Shannon theorem must be satisfied for preventing signal distortion. But in some practical applications (such as image and video processing systems), an increased sampling frequency will substantially increase the data storage and transmission costs. Different from the traditional signal acquisition process, compressive sensing, which is a new theory that captures and represents compressible signals at a sampling rate significantly below the Nyquist rate. It first employs nonadaptive linear projections that preserve the structure of the signal, and then the signal reconstruction is conducted using an optimization process from these projections. Compressive sensing has broad applications such as compressive imaging, analog-to-information conversion, biosensing, etc. This paper surveys the principles of compressive sensing and its related applications. Some further work on this theory is also presented.
作者 李树涛 魏丹
出处 《自动化学报》 EI CSCD 北大核心 2009年第11期1369-1377,共9页 Acta Automatica Sinica
基金 国家自然科学基金(60871096 60835004) 高等学校博士学科点专项科研基金(200805320006) 教育部科学技术研究重点项目(2009-120)资助~~
关键词 压缩传感 稀疏表示 信号重构 约束等距性 压缩成像 Compressive sensing, sparse representation, signal reconstruction, restricted isometry property, compressive imaging
  • 相关文献

参考文献61

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43
  • 9Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 10Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.

二级参考文献29

  • 1尹忠科,王建英,Pierre Vandergheynst.在低维空间实现的基于MP的图像稀疏分解[J].电讯技术,2004,44(3):12-15. 被引量:12
  • 2尹忠科,王建英,邵君.基于原子库结构特性的信号稀疏分解[J].西南交通大学学报,2005,40(2):173-178. 被引量:36
  • 3朱近,夏德深,王平安.基于BPNN局部位移场拟合的心脏形变计算模型[J].计算机研究与发展,2005,42(12):2143-2148. 被引量:3
  • 4Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 5Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 6Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 7Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 8Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 9Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 10Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616

共引文献71

同被引文献2025

引证文献205

二级引证文献1209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部