期刊文献+

基于贝叶斯置信框架的最小二乘支持向量机模型参数选择方法及SS_7型电力机车牵引电机建模 被引量:4

Selection Method for Model Parameters Based on Least Squares Support Vector Machine Using Bayesian Evidence Framework and the Modeling of SS_7 Traction Motor of Electric Locomotive
下载PDF
导出
摘要 利用贝叶斯置信框架推断LS—SVM模型参数并建立贝叶斯LS—SVM曲线拟合模型。运用贝叶斯LS—SVM曲线拟合模型对SS7型电力机车牵引电机的磁化曲线进行拟合。结果表明:贝叶斯LS—SVM曲线拟合模型对SS7型电力机车牵引电机的磁化曲线拟合速度及精度均有较大地提高,小样本条件下的泛化能力更好。依据贝叶斯LS—SVM曲线拟合模型建立了SS7型电力机车牵引电机的仿真模型。仿真计算表明,所建的SS7型电力机车牵引电机仿真模型与机车牵引电机实际运行状况吻合,可用于对SS7型电力机车主电路性能及控制策略的研究。 Bayesian evidence framework is proposed to estimate the LS--SVM model parameters and a Bayesian LS--SVM curve fitting model is built as well. Using Bayesian LS--SVM curve fitting model, the magnetization curve of SS7 traction motor of electric locomotive can be fitted. Results show that Bayesian LS--SVM curve fitting model can obviously improve the fitting precision and velocity for the magnetization curve of SS7 traction motor of electric locomotive. It performs even better in the generalization capability under small data set. Simulation model of SS7 traction motor of electric locomotive is built based on Bayesian LV-SVM curve fitting model. The simulation results show that the proposed model of SS7 traction motor tallies well with the actual operation status of locomotive traction motor, and can be used to study the performance and control strategy of the main circuit of SS7 electric locomotive
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2009年第6期61-66,共6页 China Railway Science
基金 国家自然科学基金资助项目(60474043)
关键词 贝叶斯推断 最小二乘支持向量机 建模 曲线拟合 电力机车 牵引电机 主电路 Bayesian inference Least squares support vector machine Modeling Curve fitting Electric locomotive Traction motor Main circuit
  • 相关文献

参考文献10

  • 1袁新生,龙门.非线性曲线拟合的三种软件解法之比较[J].徐州工程学院学报,2005,20(3):74-76. 被引量:5
  • 2E1-ARABAWY I F, YOUSEF H A, MOSTAFA M Z, et al. Parameters Estimation of Nonlinear Models of DC Motors Using Neural Networks [C] //26th Annual Conference of the IEEE. Nagoya.. Industrial Electronics Society, 2000.- 1997-2000.
  • 3韩民晓,杨奇逊.自组织网络及其在发电机模型研究中的应用[J].中国电机工程学报,1994,14(6):64-71. 被引量:3
  • 4VAPNIK V. The Nature of Statistical Learning Theory[M]. Translated by ZHANG Xuegong. Beijing: Tsinghua University Press, 2000: 91-108.
  • 5SUYKENS J A K, VANDEWALLE J. Least Squares Support Vector Machines [J]. Neural Processing Letters, 1999, 9 (3): 293-300.
  • 6VAN G T, SUYKENS J A K, BAESTAENS D K, et al. Least Squares Support Vector Machines [M]. Singapore: World Scientific, 2002.
  • 7司利云,林辉,刘震.基于最小二乘支持向量机的开关磁阻电动机建模[J].中国电机工程学报,2007,27(6):26-30. 被引量:26
  • 8VAN G T, SUYKENS J A K, LANCKRIET G, et al. Bayesian Framework for Least Squares Support Vector Machine Classifiers, Gaussian Process and Kernel Fisher Discriminant Analysis [J]. Neural Computation, 2002, 15 (5) : 1115-1147.
  • 9KWORK J T. The Evidence Framework Applied to Support Vector Machines [J]. IEEE Transactions on Neural Networks, 2000, 11 (5):1162-1173.
  • 10LAW M H, KWOK J T. Applying the Bayesian Evidence Framework to V-Support Vector Regression [M]. Heidelberg: Springer Berlin, 2001.

二级参考文献23

共引文献30

同被引文献47

  • 1张琦,马艳宁,王肖骏,沈益鑫,易文杰.基于优化克里金插值方法的隧道主结构面建模[J].土木工程学报,2022,55(S02):74-82. 被引量:5
  • 2田雪豪,康家安,江帅,于鹏,付开勇.基于最小二乘支持向量机理论的凿岩台车地质预报系统研究[J].隧道建设(中英文),2022,42(S01):267-273. 被引量:3
  • 3谭卓英,蔡美峰,岳中琦,谭国焕,李焯芬.香港充填土风化花岗岩场址勘探中的界面识别研究[J].岩土工程学报,2007,29(2):169-173. 被引量:5
  • 4刘玢.热轧生产自动化技术[M].北京:冶金工业出版社,2006.
  • 5Vapink V. The Nature of Statistical Leaning Theory [M]. New York: Springer-Verlag,1999.
  • 6Suykens J A K. Least Squares Support Vector Machines for Classification and Nonlinear Modeling [J], Neural Network World,2000,10(1) :29.
  • 7Law M H, Kowk J T. Applying the Bayesian Evidence Framework to V-Support Vector Regression [M]. Heidelberg: Springer Berlin, 2001.
  • 8KOWK J T. The Evidence Framework Applied to Support Vector Machines [J]. IEEE Trans on Neural Network,2000, 11(5) :1162.
  • 9孙一康.带钢热连轧的模型与控制[M].北京:冶金工业出版社,2007:1-3.
  • 10ABOELAZE M, ALOUL F. Courrent and Future Trends in Sensor Networks: A Survey [ J]. Wireless and Optiocal Communications Networks, 2005,68 (3) :551 - 555.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部