期刊文献+

MFCC特征改进算法在语音识别中的应用 被引量:15

Improving the MFCC Features for Speech Recognition
下载PDF
导出
摘要 本文的目的是阐明一种Mel频率倒谱参数特征的改进算法。该算法是通过线性预测的方法从语音信号中提取出残差相位,同时将残差相位与传统的MFCC相结合,并应用到语音识别系统中。该改进算法比传统的MFCC算法具有更好的识别率。 An improved extraction algorithm for the Mel frequency cepstral coefficient(MFCC) feature is presented.The residual phase is derived from the speech signals by a linear prediction analysis,and the residual phase and the MFCC features are combined. The experiments show that the proposed algorithm can effectively improve the recognition rate.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第12期146-148,共3页 Computer Engineering & Science
基金 面上项目(Z20656)
关键词 语音识别 MEL倒谱系数 残差相位 线性预测 speech recognition Mel frequency cepstral coefficient(MFCC) residual phase linear prediction
  • 相关文献

参考文献4

  • 1Skowronski M D, Harris J G. Increased MFCC Filter Bandwidth for Noise-Robust Phoneme Recognition[C]//Proc of IEEE Int'l Conf on Acoustics Speech and Signal Processing, 2002 : 801-804.
  • 2Hung W W,Wang H C. On the Use of Weighted Filter Bank Analysis for the Derivation of Robust MFCCs [J]. IEEE Signal Processing Letters,2001,8(3) : 70-73.
  • 3Zheng Fang , Zhang Guoliang, Song Zhanjiang. Comparison of Different Implementations of MFCC[J]. Computer Science & Technology, 2001,16(6) : 582-589.
  • 4MartinA. The DET Curve in Assessment of Detection Task Performance [C]//Proc of EuroSpeech' 97,1997 : 1895-1898.

同被引文献115

引证文献15

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部