期刊文献+

一种磁流变阻尼器的分数阶微分模型 被引量:8

Fractional differential model of a type of magnetorheological damper
下载PDF
导出
摘要 对磁流变阻尼器系统建立分数阶微分方程表征其非线性特征,将系统输出位移信号拟合磁流变阻尼器系统分数阶微分方程,以4个参数拟合这一黏弹性系统,其拟合精度明显高于整数阶微分方程。实验和分析表明,微分方程的阶数与磁流变阻尼器加载的电流有关,加电流时分数阶项阶数较不加电流时明显升高;加电流后分数阶项的阶数随电流强度的增加而增大;同时电流强度越大,系统惯性力的影响越小,黏、弹性力的影响程度也发生变化,控制电流强度越大,黏性力的影响越占优势;当磁流变液达到磁饱和时,模型不再随电流强度的变化发生改变。系统的黏弹特性和系统模型参数也受磁流变液性能和工作条件的影响。 A fractional differential equation that needs only 4 parameters is matched using displacement signals to describe the nonlinearity of MRF damping system. It is demonstrated that the control currents will exert a significant influence on the order of the fractional system. Compared with the condition where no magnetic field exists, the order of the system is higher and increasing with the applied currents, while the influence of the inertia decreases. The visco-elasticity of the system and the parameters of the FOS also depend on the performance of the MRF.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第12期2659-2663,共5页 Chinese Journal of Scientific Instrument
基金 福建省自然科学基金(2006J0035) 厦门市科技项目(3502Z20083037)资助
关键词 分数阶微分方程 磁流变阻尼器 磁流变液 系统建模 fractional differential equation MRF damper MRF system modeling
  • 相关文献

参考文献9

二级参考文献33

  • 1杨丽君,王焱,韩小明,张丙才.一种基于分数阶导数的边缘检测算法[J].仪器仪表学报,2006,27(z3):2155-2156. 被引量:4
  • 2池田 川田 小口.分数次微分方程式のrg甏黏问算法[J].y自又朴学会文集,2001,37(8):795-797.
  • 3池田 川田 小口.分数A微分アクティブマスダンパによる柔造物の振又朴 [D]..日本C械学会文集(C)[C].,2001,2798-2805.67-661.
  • 4[1]Alberto Carpinteri,Pietro Cornetti,Kiran M.Kolwanker.Calculation of the tensile and flexural strength of disordered materials using fractional calculus[J].Chaos,Solitons and Fractals,2004,21:623-632.
  • 5PODLUBNY I. Fractional differential equations [R].San Diego: Academic Press, 1999.
  • 6BARBOSA R, DUARTE F, MACHADO J T. A fractional calculus perspective of mechanical systems modeling [C]. The 5th Portuguese Conference on Automatic Control, 2002, 394~399.
  • 7AXTELL M, BISE E M. Fractional calculus applications in control systems [C]. New York, USA: Proceedings of the IEEE 1990 Nat. Aerospace and Electronics Conf. , 1990, 563~566.
  • 8CHEN Y Q, PETRAS I. Fractional-order control systems: theory and applications. lecture notes (slides)[D]. Invited Lecture at Institute of Automation, Austria, 2002, 111.
  • 9MATIGNON D. Stability results for fractional differential equations with applications to control processing [J]. Computational Engineering in Systems and Application, 1996, (2): 963~968.
  • 10VINAGRE B M, PODLUBNY I, HERNANDEZ A,et al. Some approximations of fractional order operators used in control theory and applications [J]. Fractional Calculus and Applied Analysis, 2000, (3): 231 ~ 248.

共引文献41

同被引文献86

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部