期刊文献+

海量人脸数据库的快速检索 被引量:5

Method of quick searching in a huge scale face database
下载PDF
导出
摘要 针对海量人脸数据库检索时间长的问题,提出了基于L-K均值层次聚类算法。此算法把大型人脸数据库划分成一些子类数据集,对处于类边界的数据,采用冗余技术和预设阈值再重新分配到一些类中,从而使检索过程只在一个或几个子类中进行。实验结果表明,该算法能极大地缩小海量人脸库的检索范围,在保证一定准确率的前提下,有效地提高了检索速度。 An L-K means hierarchy clustering algorithm is proposed to overcome the long time searching in a huge scale face database. By clustering method the whole database is divided into a number of sub-datasets. Data redundant technique and predefined threshold are applied to reassign clustering edge elements of into certain sub-datasets. Then the searching is only carried out in one or few sub-datasets, which greatly reduces the searching time. Experiment results show that the proposed method can significantly reduce the searching range, thus effectively increasing the searching speed while ensuring similar retrieval accuracy as to search the whole database.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第1期183-188,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60433020 60673099 60773095) '863'国家高技术研究发展计划项目(2007AA04Z114) 吉林大学'985工程'项目 欧盟项目(TH/Asia Link/010c111084)
关键词 计算机应用 人脸识别 聚类 快速检索 computer application face recognition clustering fast searching
  • 相关文献

参考文献8

  • 1Liu Cheng-jun. Gabor-based kernel PCA with fractional power polynominal models for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004, 26(5) : 572-581.
  • 2Xin Zheng. Locality preserving clustering for image database[C]//ACM Conference on Multimedia, 2004 : 10-16.
  • 3Aggarwal C C,Hinneburg A, Keim D A. On the surprising behavior of distance metrics in high dimensional space[J]. Lecture Notes in Computer Science, 2001: 420 -434.
  • 4Wojna A. Center-based indexing in vector and metric spaces[J]. Fundamenta Informaticae, 2003, 56 (3): 285-310.
  • 5白天,周春光,刘桂霞,王晗,王喆,张宏婷.一种共调控基因聚类的新方法[J].吉林大学学报(理学版),2009,47(2):292-298. 被引量:2
  • 6郑明,刘桂霞,周春光,王晗,郑小红,李艳文.基于并行免疫遗传算法基因表达数据的动态模糊聚类[J].吉林大学学报(理学版),2009,47(1):63-68. 被引量:8
  • 7Xu Rui. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, 2005, 16 (3) : 645- 678.
  • 8Heisele B, Serre T, Prentice S, et al. Hierarchical classification and feature reduction for fast face detection with support vector machines[J]. Pattern Recognition, 2003,36(9):2007-2017.

二级参考文献25

  • 1郑岩,黄荣怀,战晓苏,周春光.基于遗传算法的动态模糊聚类[J].北京邮电大学学报,2005,28(1):75-78. 被引量:22
  • 2Hoppner F, Klawonn F, Kruse R, et al. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition [M]. New York: John Wiley & Sons, 1999: 17-20.
  • 3Petty C C, League M R. A Theoretical Investigation of a Parallel Genetic Algorithm [ C ]//Proceedings of 3rd Int Conference on Genetic Algorithms. San Francisco: Morgan Kaufmann, 1989: 398405.
  • 4LUO Wen-jian, CAO Xian-bin, WANG Xu-fa. An Immune Genetic Algorithm Based on Immune Regulation [ C]// Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE Xplore, 2002: 801-806.
  • 5WANG Han, ZHOU Chun-guang, ZHENG Ming, et al. Measuring the Similarity of Co-regulated Genes by Integrating Quantity and Tendency of Gene Expression Changing [ C ]//The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE Xplore, 2008: 1896-1900.
  • 6Eisen M, De Hoon M. Cluster 3.0 Manual for Windows, Mac OS X, Linux, Unix [ EB/OL]. 2002-05. http ://bonsai. ims. u-tokyo, ac. jp/-mdehoon/software/cluster/cluster3, pdf.
  • 7Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization [ J ]. Molecular Biology of the Cell, 1998, 9 (12) : 3273-3297.
  • 8Spellman P T, Sherlock G, Zhang M Q, et al. The Tab Delimited Data for the Alpha Factor, Cdcl5, and E|utriation Time Courses of Yeast for 6000 Genes [ EB/OL]. [ 2008-03-18 ]. http ://genome-www. stanford, edu/cellcycle/data/ rawdata/combined, txt.
  • 9Spellman P T, Sherlock G, Zhang M Q, et al. The 800 Yeast Genes Which Express in the Cell Cycle [ EB/OL ]. 1998-10-13. http://genome-www.stanford, edu/cellcycle/data/rawdata/CellCycle98, xls.
  • 10Bansal M, Belcastro V, Ambesi-impiombato A, et al. How to Infer Gene Networks from Expression Profiles [ J ]. Mol Sys Biol, 2007, 3: 78-88.

共引文献8

同被引文献35

  • 1吴迪,郭嗣琮.改进的Fisher Score特征选择方法及其应用[J].辽宁工程技术大学学报(自然科学版),2019,38(5):472-479. 被引量:10
  • 2Vladimir V N. The Nature of Statistical Learning Theory [ M]. 2nd ed. Berlin: Springer, 1995: 267-289.
  • 3Lee S W. Pattern Recognition with Support Vector Machines [ M]. Berlin: Springer, 2002: 24-68.
  • 4Frey B J, Dueck D. Clustering by Passing Messages between Data Points [ J]. Science, 2007, 315: 972-976.
  • 5Cyril F, Michele S, ZHANG Xiang-liang, et al. Scaling Analysis of Affinity Propagation [ J ]. Phys Rev E, 2010 81(6) : 066102.
  • 6ZHANG Qing-he, CHEN Xiao-yun. Agglomerative Hierarchical Clustering Based on Affinity Propagation Algorithm [ C]//The 3rd International Symposium on Knowledge Acquisition and Modeling. Washton DC: IEEE Press, 2010: 250-253.
  • 7史峰,王小川,郁磊,等.MATI.AB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010:112-114.
  • 8Kumar A M, Khemchandani R, Gopal M, et al. Knowledge Based Least Squares Twin Support Vector Machines [ J J. Information Science : An International Journal, 2010, 180 ( 23 ) : 4606-4618.
  • 9Yan Shui-cheng,Xu Dong, Yang Qiang, et al. Dis-criminant analysis with tensor representation [C]//IEEE Computer Society Conference on ComputerVision and Pattern Recognition, San Diego, Califor-nia, 2005,526-532.
  • 10He XiaO-fel* Cai Deng, Partha Niyogi. Tensor sub-space analysis [j]. Advances in Neural InformationProcessing Systems, 2006,18 :499-506.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部