期刊文献+

文本检索方法驱动的海量图像数据库目标匹配研究

On the Object Retrieval of Large-Scale Images Based on Text Retrieval
下载PDF
导出
摘要 针对当前基于文本检索方法的图像目标对象匹配技术无法适应海量图像数据库检索的问题,本文提出一种有效可行的海量图像数据库的检索方法,并给出了该系统的构建框架。用户通过在图像中选择一块区域作为检索的目标对象提交给系统,它将从图像数据库中检索出包含有相同或相似目标对象的图像,将其排序后返回给用户。实验表明,本文提出的方法具有检索准确率高、响应时间短等特点,是一种有效的海量图像数据库检索方法。 In this paper, we present a novel approach to tackle a large-scale object retrieval problem, and demonstrate an object retrieval system architecture based on this method. The user supplies a query object by selecting some region of a query image, and the system returns a ranked list of images retrieved from a large corpus,which contains the same object. The experiments show that our approach outperforms other models in efficiency and accuracy.
作者 肖来元 闭彬
出处 《计算机工程与科学》 CSCD 北大核心 2010年第2期91-94,106,共5页 Computer Engineering & Science
关键词 目标检索 文本检索 图像检索 object retrieval text retrieval image retrieval
  • 相关文献

参考文献9

  • 1Lee K-M, Street W N. Cluster-Driven Refinement for Content-Based Digital Image Retrieval[J]. IEEE Trans on Multimedia, 2004,6(6) :817-827.
  • 2张寒玲.基于内容的图像检索[M].西安:西安电子科技大学出版社,2007.
  • 3Harris C, StephensM. A Combined Corner and Edge Detector[C]//Proc of the 4th Alvey Vision Conf, 1988: 147-151.
  • 4Tomasi C, Kanade T. Detection and Tracking of Point Features [R]. Technical Report Carnegie Mellon University CMU-CS-91-132, 1991:91-132.
  • 5Lowe D G. Object Recognition from Local Scale-Invariant Features[C]//Proc of the 7th IEEE Int'l Conf on Computer Vision, 1999:1150-1157.
  • 6Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision, 2004,60(2):91-110.
  • 7骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 8戚世贵.基于图像特征点的提取匹配及应用[M].吉林:吉林大学出版社,2006.
  • 9Mikolajczyk K, Schmid C. Scale & Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision, 2004,60(1) :63-86.

二级参考文献9

  • 1Harris C.Stephens M.A combined corner and edge detector[A].Proc.of The Fourth Alvey Vision Conference[C],Manchestsr,UK,1988:147-151
  • 2Tomasi C,Kanade T.Detection and Tracking of Point Features[R].Carnegie Mellon University Technical Report CMU-CS-91-132,Pittsburgh,USA,Apr 1991
  • 3Lowe D G.Object recognition from local scale-invariant features[A].International Conference on Computer Vision[C],Corfu,Greece,Sep 1999:1150-1157
  • 4Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
  • 5Mikolajczyk K,Schmid C.Scale & affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86
  • 6Mikolajczyk K,et al.Local features for object class recognition[A].Proc.ICCV'05[C],Beijing,China,2005,Volume 2:1792-1799
  • 7Ke Y,Sukthankar R.PCA-SIFT:a more distinctive representation for local image descriptors[A].Proc.Conf.Computer Vision and Pattern Recognition[C],2004:511-517
  • 8Ledwich L,Williams S.Reduced SIFT features for image retrieval and indoor localisation[A].Australasian Conference on Robotics and Automation[C],Canberra,Australasian,2004
  • 9Delponte E,et al.SVD-matching using SIFT features[A].Proceedings of the International Conference on Vision,Video and Graphics[C],Edinburgh,UK,July 2005:125-132

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部