期刊文献+

基于NSGA-Ⅱ算法的多目标水火电站群优化调度模型研究 被引量:16

Study on optimal scheduling model of NSGA-Ⅱalogorithm for system of hydro and thermal power plants
原文传递
导出
摘要 含有梯级水电厂的水火电力系统优化调度必须考虑各水电厂之间的水力耦合、上下游水电厂之间水流到达时间的延迟和可能弃水等因素。在考虑环境保护和节约能源以及水电厂运行特点的基础上,提出了一种以火电厂总运行费用、污染气体排放量、水电厂弃水量为优化目标的水火电站群多目标优化调度模型。快速分类非支配遗传算法(Non-dominated Sorting Genetic Algorithm Ⅱ,NSGA-Ⅱ)是一种新型的多目标遗传算法,文中首次将其应用于水火电站群的优化调度。计算表明,该模型有利于节能减排和环境保护,提高了水力资源的利用程度,提升了电力系统的综合运行效益,为水火电力系统短期优化调度提供了新的研究思路。 Hydraulic coupling between hydropower plants is crucial to optimal scheduling of a power system containing cascade hydropower plants and thermal planets, such as time delay of flow and waste water releasing. Aiming at environment protection and energy saving, this paper presents a new multi-objective genetic model adopting fast non-dominated sorting genetic algorithm (NSGA-Ⅱ) to optimize the total cost of thermal plants, the total of contaminative gas emission, and the total of spilling water of hydro plants. Simulation results show that the comprehensive benefit of a power system can be enhanced by optimization using the proposed model through increasing the hydropower benefits and reducing the thermal plant costs. This is the first time application of multi-objective algorithm to optimal scheduling, which provides a novel thought for short-term scheduling of a hydrothermal power system.
出处 《水力发电学报》 EI CSCD 北大核心 2010年第1期213-218,共6页 Journal of Hydroelectric Engineering
基金 国家自然科学基金项目(50539140) 美国能源基金会"中国可持续能源"(G-0610-08581)
关键词 水电工程 节能减排 发电调度 水火电站群 非支配遗传算法-Ⅱ hydropower engineering energy-saving and emission-reduction generation scheduling hydro and thermal electric plants NSGA-Ⅱ
  • 引文网络
  • 相关文献

参考文献11

  • 1国务院办公厅.关于转发发展改革委等部门节能发电调度办法(试行)的通知.[EB/OL].[2007-08-20],http://www.gov.cn/gongbao/content/2007/content-744115.htm.
  • 2Srinivas N, Kalyanmoy Deb. Multi-objective optimization using nondominated sorting in genetic algorithms [ J] . Evolutionary Computation. 1994,2 ( 3 ) :221 - 248.
  • 3Zilzler E,Thiele L. Multi-objective optimization using evolutionary algorithm for multi-objective optimization[ A ]. Proceedings of the 1999 Congress on Evolutionary Computation[ C]. Piscatway: New Jersey: IEEE Service Center. 1999,98 -105.
  • 4王黎,马光文.基于遗传算法的水电站厂内经济运行新算法[J].中国电机工程学报,1998,18(1):64-66. 被引量:36
  • 5马瑞,贺仁睦,颜宏文,穆大庆.考虑水火协调的多目标优化分组分段竞标模型[J].中国电机工程学报,2004,24(11):53-57. 被引量:31
  • 6Goldberg D E. A comparative analysis of selection schemes used in genetic algorithms [ A ]. In: Foundations of Genetic Algorithms [ C]. San Mateo, CA: Morgan Kaufmann, 1991:69- 93.
  • 7Hisashi Tamaki, Hajime Kita, Shigenobu Kobayashi. Muti-objective opitimation by genetic algorithms: a review, in toshio fukuda and takeshi furuhashi[ A]. Proceedings of the 1996 International Conference on Evolutionary Computation( ICEC' 96)[ C]. IEEE Nagoya ,Japan : 1996.517 - 522.
  • 8Kalyanmoy Deb, Mutiobjective optimization using evolutionary algorithms[ M ]. Chichester, U. K : Wiley ,2001.
  • 9Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, et al. A fast and elitist muhiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation[ J ]. 2002,6 (2) :182 -197.
  • 10王秀丽,李淑慧,陈皓勇,王锡凡,梅姚.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):11-15. 被引量:96

二级参考文献23

  • 1王建学,王锡凡,陈皓勇,王秀丽.基于协同进化法的电力系统无功优化[J].中国电机工程学报,2004,24(9):124-129. 被引量:76
  • 2Srinivas N,Kalyanmoy Deb.Multi-objective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation.1994,2(3):221-248.
  • 3Zilzler E,Thiele L.Multi-objective optimization using evolutionary algorithm for multi-objective optimization[C].Proceedings of the 1999 Congress on Evolutionary Computation.Piscatway:New Jersey:IEEE Service Center.1999,98-105.
  • 4Goldberg D E.A comparative analysis of selection schemes used in genetic algorithms[C].In:Foundations of Genetic Algorithms.San Mateo,CA:Morgan Kaufmann,1991:69~93.
  • 5Hisashi Tamaki,Hajime Kita,Shigenobu Kobayashi.Muti-objective opitimation by genetic algorithms:a review.in toshio fukuda and takeshi furuhashi[C].Proceedings of the 1996 International Conference on Evolutionary Computation(ICEC'96).IEEE Nagoya,Japan:1996.517-522.
  • 6Kalyanmoy Deb,Mutiobjective optimization using evolutionary algorithms[M].Chichester,U.K:Wiley,2001.
  • 7Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II.IEEE Transactions on Evolutionary Computation[J].2002,6(2):182-197.
  • 8Ceciliano J L,Nieva R.Transmission network planning using evolutionary programming[J].Proceedings of Evolutionary Computation,1999,(3):1796-1803.
  • 9Gallego R A,Monticelli A,Romero R.Transmission system expansion planning by an extended genetic algorithm[J].IEE Proc.-Gener.Transm.Distrib.1998,145(3):329-335.
  • 10Schweppe F C, Caramanis M C, Tabors R D, et al. Spot pricing of electricity[M]. Kluwer Academic Publishers, 1988.

共引文献158

同被引文献143

引证文献16

二级引证文献71

相关主题

;
使用帮助 返回顶部