期刊文献+

基于LGF的海杂波中微弱目标检测方法 被引量:10

Low-Observable Target Detection within Sea Clutter Based on LGF
下载PDF
导出
摘要 该文主要研究了海杂波的模糊分形特性以及模糊分形理论在海杂波微弱目标检测中的应用。模糊分形理论是在融合了模糊理论与分形理论的基础上提出来的,其两个重要概念是局部模糊分形维数与局部分形度。海杂波序列的分形程度可以构造为一种模糊属性,即模糊集,其具有良好的模糊理论中定义的"度"的概念,且对海杂波与目标具有良好的区分能力。局部模糊分形维数与局部分形度是针对短时海杂波序列进行处理的,对长时间海杂波序列进行处理可以滑动处理单元实现。经X波段实测海杂波数据验证,该文所提方法具有良好的微弱目标检测能力。 This paper mainly studies the fuzzy fractal characteristic of sea clutter as well as the application of fuzzy fractal theory in radar low-observable target detection. Fuzzy fractal theory is proposed based on the concept merging fuzzy theory and fractal theory. The two important concepts of it are the local fuzzy fractal dimension (LFFD) and the local grade of fractality (LGF). The fuzzy concept of fractality of sea clutter can be reconstructed as an fuzzy-attribution,i, e. a kind of fuzzy set, which is equivalent to "grade" defined well in fuzzy theory. The local fuzzy fractal dimension and the local grade of fractality are for short-time sea clutter series, and sliding measurement can be used for dealing with long-time sea clutter series. By the verification of X-band real sea clutter,the method proposed has a good performance of detecting low-observable target in sea clutter.
出处 《信号处理》 CSCD 北大核心 2010年第1期69-73,共5页 Journal of Signal Processing
基金 教育部新世纪优秀人才支持计划(批准号:NCET-05-0912) 国家自然科学基金(批准号:60672140 60802088)
关键词 模糊分形 局部分形度 海杂波 微弱目标检测 fuzzy fractal local grade of fractality sea clutter low-observable target detection
  • 引文网络
  • 相关文献

参考文献12

  • 1Z. Zhou,R. Lu. Artificial intelligence in medicine in China [ J ]. Artificial Intelligence Medicine ,2004,32 : 1-2.
  • 2O. Castillo, P. Melin. A New Hybrid Fuzzy-Fractal Approach for Plant Monitoring and Diagnostics [ J 1- International Journal of Smart Engineering System Design, 2003,5 (4) : 417 -427.
  • 3L. Zadeh. From Computing with Numbers to Computing with Words? From Manipulation of Measurements to Manipulation of Perceptions [ J ]. International Journal of Applied Math and Computer Science,2002,12 ( 3 ) :307-324.
  • 4B. B. Mandelbrot. The Fractal Geometry of Nature [ M ]. WH Freeman, 1982.
  • 5B. B. Mandelbrot. Gaussian Self-Affinity & Fractals:Globality, the Earth 1/f & R/S [ M ]. New York : Springer, 2002.
  • 6K. Kamijo, A. Yamanouchi, C. Kai. Time Series Analysis for Altitude Structure Using Local fractal Dimension-An Example of Seawater Temperature Fluctuation around Izu Peninsula-[ J ]. Technical Report of IEICE, NLP2004-23,2004.
  • 7K. Kamijo, A. Yamanouchi. Signal Processing Using Fuzzy Fractal Dimension and Grade of Fractality-Application to Fluctuations in Seawater Temperature [ J ]. Proceedings of the 2007 IEEE Symposimn on Computational Intelligence in Image and Signal Processing ( CIISP 2007 ), 2007 : 133- 138.
  • 8Drosopoulos A. Description of the OHGR Database [ R]. Tech. Note No. 94-14, Defence Research Establishment Ottawa, 1994 : 1-30.
  • 9Jing Hu, Wenwen Tung, Jianbo Gao. Detection of low observable targets within sea clutter by structure function based multifractal analysis[ J]. IEEE Trans. A P,2006,54 (1) :136-142.
  • 10刘宁波,关键.海杂波的多重分形判定及广义维数谱自动提取[J].海军航空工程学院学报,2008,23(2):126-131. 被引量:13

二级参考文献13

共引文献12

同被引文献162

引证文献10

二级引证文献42

;
使用帮助 返回顶部