期刊文献+

基于分形可变步长LMS算法的海杂波中微弱目标检测 被引量:8

Low-Observable Target Detection in Sea Clutter Based on Fractal-based Variable Step-Size LMS Algorithm
下载PDF
导出
摘要 该文主要研究了基于Hurst指数与可变步长LMS算法相结合的分析方法在海杂波微弱目标检测中的应用。一直以来,分形理论与统计理论是分别应用到目标检测中的,该文将分形可变步长LMS算法引入到海杂波微弱目标检测中,并在此基础上提出一个海杂波中的微弱目标检测模型,初步实现了基于LMS算法的检测方法与基于单一分形特征的检测方法的结合。最后,采用X波段雷达实测海杂波数据进行验证,结果表明该检测模型具有良好的检测海杂波中微弱目标的能力。 This paper mainly studies the application of the combination of Hurst exponent and variable step-size LMS algorithm in low-observable target detection in sea clutter. Up to now, fractal theory and statistic theory are applied to target detection respectively. In this paper, the fractal-based variable step-size Least Mean Square (LMS) algorithm is introduced and a novel low-observable target detection model is proposed based on the algorithm. And the combination of LMS algorithm and single fractal characteristic in target detection is elementarily realized. Finally, X-band real sea clutter is used for verification and the results indicate that the proposed model has a good performance of detecting low-observable target in sea clutter.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第2期371-376,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60672140 60802088) 教育部新世纪优秀人才支持计划(NCET-05-0912)资助课题
关键词 目标检测 分形 可变步长LMS 海杂波 Target detection Fractal Variable step-size LMS Sea clutter
  • 引文网络
  • 相关文献

参考文献15

  • 1Thayaparan T and Kennedy S. Detection of a manoeuvring air target in sea-clutter using joint time-frequency analysis techniques[J}. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(1): 19-30.
  • 2Davidson G and Griffiths H D. Wavelet detection scheme for small targets in sea clutter[J]. Electronics Letters, 2002, 38(19): 1128-1130.
  • 3Leung H, Dubash N, and Xie N. Detection of small objects in clutter using a GA-RBF neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 98-118.
  • 4严颂华,吴世才,吴雄斌.基于神经网络的高频地波雷达目标到达角估计[J].电子与信息学报,2008,30(2):339-342. 被引量:17
  • 5Lin C P, Sano M, and Sayama S, et al.. Detection of radar targets embedded in sea ice and sea clutter using fractals, wavelets, and neural networks[J]. IEICE Transactions on Communications, 2000, E83-B(9): 1916-1929.
  • 6田妮莉,喻莉.一种基于小波变换和FIR神经网络的广域网网络流量预测模型[J].电子与信息学报,2008,30(10):2499-2502. 被引量:9
  • 7Lo T, Leung H, and Haykin S. Fractal characterization of sea-scattered signals and detection of sea-surface targets[J]. IEE Proceedings-F, 1993, 140(4): 243-250.
  • 8Zhao Min, Fan Yin-hai, and Lv Jin. Chaotic time series gray correlation local forecasting method based on fractal theory[C]. 2007 3rd International Workshop on Signal Design and Its Applications in Communications, 2007: 39-43.
  • 9Lin C P, Sano M, and Sekine M. Detection of radar targets by means of fractal error[J]. IEICE Transactions on Communications, 1997, E80-B(11): 1741-1748.
  • 10陈双平,郑浩然,刘金霞,童庆,王煦法.离散稳恒信号的多重分形谱的计算及其应用[J].电子与信息学报,2007,29(5):1054-1057. 被引量:2

二级参考文献29

共引文献25

同被引文献113

引证文献8

二级引证文献124

;
使用帮助 返回顶部