期刊文献+

一种改进型量子遗传算法 被引量:27

Novel Improved Quantum Genetic Algorithm
下载PDF
导出
摘要 针对量子遗传算法在复杂连续函数优化中存在的收敛速度慢、易陷入局部极值等缺点,提出一种改进型量子遗传算法。采用动态策略调整量子门旋转角,以加快收敛速度,采用优体交叉策略实施交叉操作,以增强局部搜索能力。通过典型复杂连续函数的测试验证该算法的可行性和有效性。 Aiming at the shortcomings of slow convergence and easy to fall into local minimum when using Quantum Genetic Algorithm(QGA) to optimize complex continuous functions, this paper proposes a Novel Improved Quantum Genetic Algorithm(NlQGA). It adopts the dynamic adjustment strategy to adjust the quantum rotation comer to speed up convergence rate, and uses the cross strategy of excellent individuals to get crossover operation to enhance local search ability. Test results based on typical complex continuous functions show that NIQGA is feasible and effective.
作者 张宗飞
出处 《计算机工程》 CAS CSCD 北大核心 2010年第6期181-183,共3页 Computer Engineering
基金 浙江省教育厅科研基金资助项目(Y200909706)
关键词 量子遗传算法 改进型量子遗传算法 复杂函数 Quantum Genetic Algorithm(QGA) Improved Quantum Genetic Algorithm(IQGA) complex function
  • 相关文献

参考文献6

  • 1Han Kuk-Hyun, Kim J H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problems[C]//Proc. of IEEE Conference on Evolutionary Computation. Piscataway, USA: IEEE Press, 2000.
  • 2Han Kuk-Hyun, Park Kui-Hong, Lee Ci-Ho, et al. Parallel Quantuminspired Genetic Algorithm for Combinatorial Optimization Problems[C]//Proc. of IEEE Conference on Evolutionary Computation. Piscataway, USA: IEEE Press, 2001.
  • 3Narayanan A, Moore M. Quantum-inspired Genetic Algorithm[C]// Proc. of IEEE International Conference on Evolutionary Computation. Piseataway, USA: IEEE Press, 1996.
  • 4Wang Ling, Tang Fang, Wu Hao. Hybrid Genetic Algorithm Based on Quantum Computing for Numerical Optimization and Parameter Estimation[J]. Applied Mathematics and Computation, 2005, 171(2) 1141-1156.
  • 5周传华,钱锋.改进量子遗传算法及其应用[J].计算机应用,2008,28(2):286-288. 被引量:33
  • 6朱筱蓉,张兴华.基于改进量子遗传算法的连续函数优化研究[J].计算机工程与设计,2007,28(21):5195-5197. 被引量:8

二级参考文献16

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2王凌,吴昊,唐芳,郑大钟,金以慧.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-160. 被引量:45
  • 3陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 4李英华,王宇平.有效的混合量子遗传算法[J].系统工程理论与实践,2006,26(11):116-124. 被引量:14
  • 5周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.
  • 6Han K H,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(6),580-593.
  • 7Han K H,Kim J H.Genetic quantum algorithm and its application to combinatorial optimization problems[C].Proc of IEEE Conference on Evolutionary Computation.Piscataway:IEEE Press, 2000:1354-1360.
  • 8Han K H, Park K H.Parallel quantum-inspired genetic algorithm for combinatorial optimization problem[C].Proc of IEEE Conference on Evolutionary Computation.Piscataway:IEEE Press, 2001:1422-1429.
  • 9Han K H, Kim J H. Quantum-inspired evolutionary algorithms with a new termination criterion,He gate, and two-phase scheme [J]. IEEE Transactions Evolutionary Computation, 2004,8 (2): 156-169.
  • 10Han K H,Kim J H.On setting the parameters of quantum-inspired evolutionary algorithm for practical applications [C]. Canberra, Australia:Proc Congr Evolutionary Computation,2003:178-184.

共引文献38

同被引文献182

引证文献27

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部