期刊文献+

h-可积条件下两两NQD阵列加权和的完全收敛性 被引量:4

Complete Convergence for Weighted Sums of Pairwise NQD Random Arrays under Condition of h-Integrability
下载PDF
导出
摘要 利用截尾和矩不等式方法研究在h-可积条件下,两两NQD阵列加权和的完全收敛性,建立并证明了关于两两NQD阵列加权和完全收敛性的两个重要定理,推广和改进了一些已有的结果. Under the condition of h-integrability, we sums of pairwise NQD random arrays using the means results for weighed sums of arrays were established. improved the main existed results. investigated the complete convergence for the weighted moment inequality and truncated method. Two classical The results presented in this paper have extended and
作者 章茜 王文胜
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第2期183-188,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10771070)
关键词 两两NQD阵列 h-可积 完全收敛性 pairwise NQD random arrays h-integrability complete convergence
  • 相关文献

参考文献8

二级参考文献9

共引文献153

同被引文献30

  • 1PENG ShiGe Institute of Mathematics,Shandong University,Jinan 250100,China.Survey on normal distributions,central limit theorem,Brownian motion and the related stochastic calculus under sublinear expectations[J].Science China Mathematics,2009,52(7):1391-1411. 被引量:54
  • 2万成高.两两NQD列的大数定律和完全收敛性[J].应用数学学报,2005,28(2):253-261. 被引量:44
  • 3Chandra T K. Uniform integrability in the Cesaro sense and the weak law of large numbers[J]. Sankhya Ser A,1989,51:309 -317.
  • 4Ordonez C M. Convergence of weighted sums of random variables and uniform integrability concerning the weights[J].Collect Math, 1994,45:121-132.
  • 5Chandra T K, Goswami A. Cesdro a-integrability and laws of large numbers, I [J]. Theor Probab,2003,16 : 655-699.
  • 6Chandra T K, Goswami A. Cesaro a-integrability and laws of large numbers, II [J]. Theor Probab,2006,19:789-816.
  • 7Ordonez C M, Volodin A I. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability[J]. Math Anal Appl, 2005,305 (2) : 644- 658.
  • 8Yuan Demei, Tao Bao. Mean convergence theorems for weighted sums of arrays of residually h integrable random variables concerning the weights under dependence assumptions[J]. Acta Appl Math,2008,103::721-234.
  • 9Lehmann E L. Some concepts of dependence[J]. Ann Math statist, 1966,43: 1137-1153.
  • 10Baek J I, Ko M H, Kin, T S. On the complete convergence for weighted sums of dependent random variables under condition of weigh- tedintegrability[J]. J Korean MathSoc,2008,45(4):l101-1111.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部