期刊文献+

基于小波变换的遥测速变信号实时压缩技术研究

Study on Real-time Compression for Telemetry Rapidly-varied Signal Based on Wavelet
下载PDF
导出
摘要 遥测速变信号属于非平稳信号,因此采用小波变换的方法对其进行实时压缩,而在对信号进行小波变换时,小波基的选取是至关重要的,它会直接影响到运算速度和处理效果。从小波基的基本性质和小波基的评价标准两个方面加以分析比较,并结合遥测速变信号的特点和压缩要求,选择了几种典型的小波基进行实验比较。实验结果表明最适合于遥测速变信号实时压缩的最佳小波基为bior2.2。 The telemetry rapidly-varied signal belongs to the unstable signal, so the compression method based on wavelet transform to compress the signal is adopted. When wavelet transform is applied to signal compression, the choice of wavelet base is so important, that it affects the transform's speed and the quality of the reconstructed signal. The characteristics of wavelet base and the evaluation criteria are analyzed, and several typical wavelet bases are selected to compare by means of the evaluation criteria. Through extensive experiments, the biorthogonal wavelet base bior2.2 is chosen for real-time compression of the telemetry rapidly-varied signal.
出处 《科学技术与工程》 2010年第6期1531-1534,1539,共5页 Science Technology and Engineering
关键词 小波变换 小波基函数 遥测速变信号 实时压缩 wavelet transform wavelet base telemetry rapidly-varied signal real-time compression
  • 相关文献

参考文献7

二级参考文献12

  • 1王公宝,张文博,向东阳.小波变换在电力系统谐波检测中的应用[J].海军工程大学学报,2005,17(2):53-58. 被引量:13
  • 2[1]Vetterli,M.,Kovacevic,J.,Wavelets And Subband Coding(Prentice Hall, 1995)ISBN 0-8493-8271-8.
  • 3[2]Grosman, A.,Morlet, J.,Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape,Siam. J.Math. Anal.,Vol. 15,No.4,pp723-736,1984.
  • 4[3]Donoho D L. De-noising by Soft-Thresholding. IEEE Trans on IT, 1995, 41(3): 613-627.
  • 5Da Silva E A D, Ghanbari M. On the performance of linear phase wavelet transforms in low bit-rate image coding[J]. IEEE Transactions on Image Processing, 1996, 5(5):689-705.
  • 6Antonini M, Barlaud M, Mathieu P,et al. Image coding using wavelet transform[J]. IEEE Trans. Image Processing, 1992, 1(4): 719-746.
  • 7Morales E, Shih F Y. Wavelet coefficients clustering using morphological operations and pruned quadtrees[J]. Pattern Recognition, 2000, 33:1611-1620.
  • 8Daubechies I. Orthogonal bases of compactly supported wavelets[J]. Comm. Pure Appl. Math., 1988,41: 909-966.
  • 9Dahmen W, Kunoth A, Urban K. Biorthogonal spline wavelet on the interval-stability and moment conditions[J]. Applied and computational harmonic analysis, 1999, 6: 132-296.
  • 10Winger L L, Anastasios N, Venetsanopoulos. Biorthogonal nearly coiflet wavelet for image compression[J]. Signal Processing: Image Commutation, 2001,16:859-869.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部