期刊文献+

上证指数高频数据的多重分形错觉 被引量:14

Illusionary multifractality in high-frequency data of Shanghai Stock Exchange Composite Index
下载PDF
导出
摘要 以上证指数5分钟取样的高频数据为例,采用配分函数法对每一交易日的数据进行多重分形分析,发现质量指数τ(q)为线性函数.用统计自举生成随机时间序列以深入剖析多重分形谱f(α),发现约有51%的交易日,其多重分形特性无法通过显著性检验.进一步分析发现,所有真实时间序列的奇异性强度与随机序列的奇异性强度相差无几,因而完全可以用后者加以解释.因此,上证指数本身并不具多重分形特性. Multifractal analysis of the intraday five-minute Composite (SSEC) was conducted by utilizing the partition functions τ(q) . Shuffled series generated by bootstrapping high-frequency data of Shanghai Stock Exchange function method, resulting in linear mass exponent were used to perform a careful scrutiny on the extracted multifractal spectra f(α). It is found that the muhifractal features in about 51% trading days are statistically insignificant. Moreover, the singularity strength of the real data is indistinguishable from that of the shuffled data and the latter can be used to account for the former. Hence, the so-called muhifractality claimed for the SSEC (and other prices or indexes) is merely an illusion.
作者 周炜星
出处 《管理科学学报》 CSSCI 北大核心 2010年第3期81-86,共6页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(70501011) 霍英东教育基金会高等院校青年教师基金资助项目(101086)
关键词 金融物理学 上证指数 多重分形分析 统计检验 econophysics SSEC index multifractal analysis statistical analysis
  • 引文网络
  • 相关文献

参考文献31

  • 1Mantegna R N, Stanley H E. An Introduction to Econophysics: Correlations and Complexity in Finance [ M ]. Cambridge: Cambridge University Press, 2000.
  • 2李平,汪秉宏,全宏俊.金融物理的若干基本问题与研究进展(Ⅰ)——价格的统计分析与价格涨落的随机过程模型[J].物理,2004,33(1):28-33. 被引量:9
  • 3Mandelbrot B B. The variation of certain speculative prices[J]. Journal of Business, 1963, 36(4) : 394 -419.
  • 4Fama E F. The behavior of stock market prices [ J ]. Journal of Business, 1965, 38 ( 1 ) : 34 - 105.
  • 5Mantegna R N, Stanley H E. Scaling behaviour in the dynamics of an economic index[J]. Nature, 1995, 376(6535) : 46 -49.
  • 6Mandelbrot B B. Long-ran interdependence in price records and other economic time series [ J ]. Econometrica, 1970, 38 (Suppl.) : 122 - 123.
  • 7Mandelbrot B B. Analysis of long-run dependence in economics: The R/S technique[ J]. Econometrica, 1971, 39 (Suppl. ) : 68 -69.
  • 8Lo A W. Long-term memory in stock market prices[J]. Econometrica, 1991, 59(5) : 1279 -1313.
  • 9Ghashghaie S, Breymann W, Peinke J, et al. Turbulent cascades in foreign exchange markets [ J ]. Nature, 1996, 381 (6585) : 767 - 770.
  • 10Sornette D. Critical market crashes[ J]. Physics Reports, 2003, 378(1): 1 -98.

二级参考文献57

  • 1HullJohnC 张陶伟译.《期权、期货和衍生证券》[M].华夏出版社,1997..
  • 2Lux T,Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[J]. Nature,1999,397:498-450.
  • 3Farmer J D,Lo A W. Frontiers of finance:evolution and efficient markets[C]. Proc. Natl. Acad. Sci. USA, 1999,969:991-995.
  • 4Bonanno G,Lillo F,Mantegna R N. Levels of complexity in financial markets[J]. Physica A,2001,299:16-27.
  • 5Ausloos M, Vandewalle N, Boveroux. Applications of statistical physics to economic and financial topics[J].Physica A, 1999,274:229-240.
  • 6Stanley H E, Amaral L A N, Gabaix X. Similarities and differences between physics and economics[J].Physica A,2001,299:1-15.
  • 7Cont R,Potters M,Bouchaud J-P. In : Dubrulle B,Graner F,Sornette D(Eds. ). Scale invariance and beyond[C]. Berlin : Springer, 1997.
  • 8Plerou V,Gopikrishnan P,Amaral L A N,Meyer M,Stanley H E. Scaling of the distribution of price fluctuations of individual companies[J ]. Phys. Rev. E, 1999,60: 6519- 6529.
  • 9Gopikrishnan P,Plerou V,Amaral L A N, Meyer M,Stanley H E. Scaling of the distributions of fluctuations of financial market indices[J]. Phys. Rev. E, 1999,60: 5305- 5316.
  • 10Schmitt F,Schertzer D,Lovejoy S. Multifraetal fluctuations in finance[J]. Int. J. Theor. Appl. Fin. ,2000,3:361-364.

共引文献77

同被引文献227

引证文献14

二级引证文献169

;
使用帮助 返回顶部