摘要
结合光谱油液分析技术,运用支持向量机对某履带车辆综合传动装置磨损状态进行研究。建立了一种多输出最小二乘支持向量回归算法,并将其应用到综合传动装置的光谱油液分析数据的预测研究中。采用交叉验证方法,讨论了回归算法中参数的选取问题,并将磨损元素预测值与试验值进行了对比分析。结果表明,该方法在较短里程(4000km以内)具有较高的准确率,可以用于综合传动装置磨损状态的预测研究。
The wear state of power-shift steering transmission (PSST) system was studied with support vector machine method combining spectrometric oil analysis technology.A method of multiple output least squares support vector regression was developed.The spectrometric oil analysis data were studied using multiple output least squares support vector regression.The selection of regression parameters was studied using cross validation method.The predictive values of wear elements were compared with the actual values.The result shows that this method has better prediction accuracy for wear elements in relatively short-distance miles (no more than 4 000 km),it can be used for studying wear state and preventing faults of PSST system.
出处
《润滑与密封》
CAS
CSCD
北大核心
2010年第3期46-49,80,共5页
Lubrication Engineering
基金
国防‘十一五’预先研究项目(62301030303)
高等学校学科创新引智计划项目(B08043)
总装‘十一五’预研项目(40402020102)
关键词
支持向量机
综合传动
磨损状态
support vector machine
power-shift steering transmission
wear state