期刊文献+

基于支持向量机的综合传动装置磨损状态研究 被引量:2

Study on Wear State of Power-shift Steering Transmission System Based on Support Vector Machine
下载PDF
导出
摘要 结合光谱油液分析技术,运用支持向量机对某履带车辆综合传动装置磨损状态进行研究。建立了一种多输出最小二乘支持向量回归算法,并将其应用到综合传动装置的光谱油液分析数据的预测研究中。采用交叉验证方法,讨论了回归算法中参数的选取问题,并将磨损元素预测值与试验值进行了对比分析。结果表明,该方法在较短里程(4000km以内)具有较高的准确率,可以用于综合传动装置磨损状态的预测研究。 The wear state of power-shift steering transmission (PSST) system was studied with support vector machine method combining spectrometric oil analysis technology.A method of multiple output least squares support vector regression was developed.The spectrometric oil analysis data were studied using multiple output least squares support vector regression.The selection of regression parameters was studied using cross validation method.The predictive values of wear elements were compared with the actual values.The result shows that this method has better prediction accuracy for wear elements in relatively short-distance miles (no more than 4 000 km),it can be used for studying wear state and preventing faults of PSST system.
出处 《润滑与密封》 CAS CSCD 北大核心 2010年第3期46-49,80,共5页 Lubrication Engineering
基金 国防‘十一五’预先研究项目(62301030303) 高等学校学科创新引智计划项目(B08043) 总装‘十一五’预研项目(40402020102)
关键词 支持向量机 综合传动 磨损状态 support vector machine power-shift steering transmission wear state
  • 相关文献

参考文献13

二级参考文献36

  • 1王丽,卓林,何鹰,赵英,李伟,王小如,Frank Lee.近红外光谱技术鉴别海面溢油[J].光谱学与光谱分析,2004,24(12):1537-1539. 被引量:35
  • 2张立明.人工神经网络的模型及其应用[M].西安:上海:复旦大学出版社,1995..
  • 3李柱国.机械设备状态监测油液分析技术[M].上海科技文献出版社,1997.1.
  • 4上海交通大学 上海柴油机股份有限公司.《D6114柴油机磨合规范优化研究》课题研究报告[M].,1999,10..
  • 5Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 6Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 7Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 8Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 9Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 10Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.

共引文献393

同被引文献26

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部