期刊文献+

L-赖氨酸产生菌FH128菌株的研究(Ⅰ)FH128菌株的选育及摇瓶发酵 被引量:2

Studies on L Lysine Producing Strain FH128 (Ⅰ) The Screening of L Lysine Producing Strain FH128 and Shake Flask Culture
下载PDF
导出
摘要 以赖氨酸产生菌A111(HS-、AECr)为出发株,经化学诱变剂MNNG(N-甲基-N′-硝基-N-亚硝基胍)及单氟醋酸处理获得单氟醋酸抗性突变株F79,摇瓶发酵产L-赖氨酸盐酸盐7.0%~7.5%,对糖转化率38%~40%,分别比A111株提高约25%及20%。然后,再以F79菌为亲株经MNNG及噻唑丙氨酸处理获得噻唑丙氨酸抗性突变株FH128,在适宜的培养条件下,摇瓶发酵产L-赖氨酸盐酸盐8.5%~9.5%,最高产酸率11%,对糖转化率45%~50%。在16L自控发酵罐发酵,产L-赖氨酸盐酸盐12%~14%,对糖转化率40%~45%;在20~100m3发酵罐发酵,产酸率为8.5%~9.5%,对糖转化率40%~42%,提取总收率80%~85%,成品(饲料级L-赖氨酸盐酸盐)质量符合国家标准(GB8245-87)。FH128菌株遗传性能稳定,营养要求粗放,工艺较简单,便于工业化,二年前已应用于工业生产。 A resistant mutant of F79,the lysine producer, was derived from the parent strain A111(HS -、AEC r) by mutation with MNNG(N methyl N′ nitro N nitrosoguanidine) and MF(Monfluoroactic acid).The production of L lysine·HCl of the mutant in flask was 7.0% ̄7.5%,the conversion rate of glucose to L lysine was 38% ̄40%.The TA(α Thiazol DL Alanine) resistant strain FH128 was derived from the parent strain F79 by mutation with MNNG and TA.Under optimal culture coditions,the production of L lysine·HCl was 8.5% ̄ 9.5%; the maxium production of L lysine·HCl was 11%,the conversion rate of glucose was 45% ̄50% in shake flask.In 16 L fermenter,the production of L lysione·HCl was 12% ̄14%,the coversion rate was 40% ̄45%.In 20 m 3 ̄100 m 3 fermenter,the production of L lysine·HCl was 8.5% ̄9.5%,the conversion rate was 40% ̄42%.
出处 《工业微生物》 CAS CSCD 1998年第4期1-6,共6页 Industrial Microbiology
基金 国家"八五"科技攻关项目
关键词 调节突变株 发酵 L-赖氨酸 Regulatory mutant, Fermentation, L lysine
  • 相关文献

参考文献1

共引文献3

同被引文献39

  • 1郭宏秋,杨胜利.透明颤菌血红蛋白在发酵工业中的应用概述[J].微生物学通报,1996,23(4):227-230. 被引量:12
  • 2朱亨政.我所柠檬酸发酵研究的进展[A]..上海市工业微生物研究的建所二十五周年纪念文集[C].,1991.60~69.
  • 3Kirimura K, Sato T, Nakanishi N, et al. Breeding of starch-utilizing and itaconic-aeid-produeing koji molds by interspecific protoplast fusion between. Aspergillus terreus and Aspergillus usamii,Appl Microbiol Biotechnol, 1997,47:127- 131.
  • 4Vehmaanperae J, Nybergh P M A, Tanner R. et al. Industrial production of a-amylase by genetically engineered Bacillus. Enzyme Microb Technol, 1987,9 : 546 - 549.
  • 5Picataggio S K, Zlaang M, Franden M A. et al. Reomabinant Lactobacillus for tea-menration of xylose to lactic acid and lactate.Wo, 1997,97/13842.
  • 6Wells J A, Ferrari D J, Estell D A. et al. Cloning sequencing and secretion of Bacillus amyloliquefaciem subtilisin in Bacillus subtilis. Nucleic Acids Res, 1983,11:7911 - 7925.
  • 7Kaneko R, Koyanm N, Tmi Y C. et al. Molecular cloning of the structural gene for alkaline dastase YaB, a new subtilisin produced by an ulkulophilic Bdcillus strain. J Bacteriol, 1989, 171:5232 - 5236.
  • 8Jang J S, KangDO, Chun MJ.et al. Molecular cloningof a subtilisin J from Bacillus stearothermophilus and its expression in Bacillus subtilis, Biochem Biophys Res Comm, 1992, 184:277 -282.
  • 9Feng Y Y, Yang W B, Ong S L, et al. Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilis strain. Appl Microbiol Biotechnol,2001,57 : 153 - 160.
  • 10Estell D A, Graycar T P, Wells J A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem, 1985,260:6518 - 6521.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部